File size: 5,222 Bytes
a150770 b4d48e9 a150770 b4d48e9 0ccca88 a150770 7a51f6a a150770 1802429 a150770 1802429 a150770 4800560 0ee3024 e084004 eff382b e084004 78b592e e084004 78b592e e084004 3238cd2 e084004 3238cd2 78b592e 3238cd2 a150770 0814f9c a150770 0814f9c a150770 3b25dd6 a150770 3b25dd6 e084004 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
---
annotations_creators:
- expert-generated
- machine-generated
language_creators:
- found
language:
- de
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
- text-classification
task_ids:
- text-scoring
- sentiment-scoring
- part-of-speech
pretty_name: SentiWS
dataset_info:
- config_name: pos-tagging
features:
- name: word
dtype: string
- name: pos-tag
dtype:
class_label:
names:
'0': NN
'1': VVINF
'2': ADJX
'3': ADV
splits:
- name: train
num_bytes: 75526
num_examples: 3471
download_size: 37314
dataset_size: 75526
- config_name: sentiment-scoring
features:
- name: word
dtype: string
- name: sentiment-score
dtype: float32
splits:
- name: train
num_bytes: 61642
num_examples: 3471
download_size: 45116
dataset_size: 61642
configs:
- config_name: pos-tagging
data_files:
- split: train
path: pos-tagging/train-*
default: true
- config_name: sentiment-scoring
data_files:
- split: train
path: sentiment-scoring/train-*
---
# Dataset Card for SentiWS
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://wortschatz.uni-leipzig.de/en/download
- **Repository:** [Needs More Information]
- **Paper:** http://www.lrec-conf.org/proceedings/lrec2010/pdf/490_Paper.pdf
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
SentimentWortschatz, or SentiWS for short, is a publicly available German-language resource for sentiment analysis, opinion mining etc. It lists positive and negative polarity bearing words weighted within the interval of [-1; 1] plus their part of speech tag, and if applicable, their inflections. The current version of SentiWS contains around 1,650 positive and 1,800 negative words, which sum up to around 16,000 positive and 18,000 negative word forms incl. their inflections, respectively. It not only contains adjectives and adverbs explicitly expressing a sentiment, but also nouns and verbs implicitly containing one.
### Supported Tasks and Leaderboards
Sentiment-Scoring, Pos-Tagging
### Languages
German
## Dataset Structure
### Data Instances
For pos-tagging:
```
{
"word":"Abbau"
"pos_tag": 0
}
```
For sentiment-scoring:
```
{
"word":"Abbau"
"sentiment-score":-0.058
}
```
### Data Fields
SentiWS is UTF8-encoded text.
For pos-tagging:
- word: one word as a string,
- pos_tag: the part-of-speech tag of the word as an integer,
For sentiment-scoring:
- word: one word as a string,
- sentiment-score: the sentiment score of the word as a float between -1 and 1,
The POS tags are ["NN", "VVINF", "ADJX", "ADV"] -> ["noun", "verb", "adjective", "adverb"], and positive and negative polarity bearing words are weighted within the interval of [-1, 1].
### Data Splits
train: 1,650 negative and 1,818 positive words
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License
### Citation Information
@INPROCEEDINGS{remquahey2010,
title = {SentiWS -- a Publicly Available German-language Resource for Sentiment Analysis},
booktitle = {Proceedings of the 7th International Language Resources and Evaluation (LREC'10)},
author = {Remus, R. and Quasthoff, U. and Heyer, G.},
year = {2010}
}
### Contributions
Thanks to [@harshalmittal4](https://github.com/harshalmittal4) for adding this dataset. |