Datasets:
File size: 7,776 Bytes
bbbfdff f04c1c1 bbbfdff 6e5e04c bbbfdff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors, Stack Overflow, the authors of the questions and answers, and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""StackSample: 10% of Stack Overflow Q&A"""
import csv
import os
import datasets
_DESCRIPTION = """\
Dataset with the text of 10% of questions and answers from the Stack Overflow programming Q&A website.
This is organized as three tables:
Questions contains the title, body, creation date, closed date (if applicable), score, and owner ID for all non-deleted Stack Overflow questions whose Id is a multiple of 10.
Answers contains the body, creation date, score, and owner ID for each of the answers to these questions. The ParentId column links back to the Questions table.
Tags contains the tags on each of these questions.
"""
_HOMEPAGE = "https://www.kaggle.com/stackoverflow/stacksample"
_LICENSE = "All Stack Overflow user contributions are licensed under CC-BY-SA 3.0 with attribution required."
class SOStackSample(datasets.GeneratorBasedBuilder):
"""StackSample: 10% of Stack Overflow Q&A"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="Answers",
version=VERSION,
description="This part of the dataset contains only posts that are answers.",
),
datasets.BuilderConfig(
name="Questions",
version=VERSION,
description="This part of the dataset contains only posts that are questions.",
),
datasets.BuilderConfig(
name="Tags",
version=VERSION,
description="This part of the dataset contains only tags of the questions in the question part of the StackSample dataset.",
),
]
@property
def manual_download_instructions(self):
return """\
You must have a kaggle account. Go to https://www.kaggle.com/stackoverflow/stacksample
and manually download the language of your interest. Once it is downloaded,
go to the place where you downloaded it and unzip the folder. Three files named
`Answers.csv`, `Questions.csv`, and `Tags.csv` will have appeared in your Downloads folder
or whichever folder your browser chooses to save files to.
so_stacksample can then be loaded using the following command
`datasets.load_dataset("so_stacksample", "<csv_file_name>",data_dir="<path/to/folder>")`,
where `<path/to/folder> is the path to the unzipped folder. Example if you downloaded
and unzipped the folder in your downloads folder:
`datasets.load_dataset("so_stacksample", "Answers", data_dir="/home/<user>/Downloads")`
will load the `Answers.csv` dataset.
"""
def _info(self):
if self.config.name == "Answers": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"Id": datasets.Value("int32"),
"OwnerUserId": datasets.Value("int32"),
"CreationDate": datasets.Value("string"),
"ParentId": datasets.Value("int32"),
"Score": datasets.Value("int32"),
"Body": datasets.Value("string"),
}
)
elif self.config.name == "Questions":
features = datasets.Features(
{
"Id": datasets.Value("int32"),
"OwnerUserId": datasets.Value("int32"),
"CreationDate": datasets.Value("string"),
"ClosedDate": datasets.Value("string"),
"Score": datasets.Value("int32"),
"Title": datasets.Value("string"),
"Body": datasets.Value("string"),
}
)
else:
features = datasets.Features(
{
"Id": datasets.Value("int32"),
"Tag": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
path_to_manual_file = os.path.join(
os.path.abspath(os.path.expanduser(dl_manager.manual_dir)), self.config.name + ".csv"
)
if not os.path.exists(path_to_manual_file):
raise FileNotFoundError(
f"{path_to_manual_file} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('so_stacksample', '{self.config.name}', data_dir=...)` that includes a file name {self.config.name + '.csv'}. Manual download instructions: \n{self.manual_download_instructions})"
)
return [
datasets.SplitGenerator(
name=self.config.name,
gen_kwargs={
"filepath": path_to_manual_file,
"split": self.config.name,
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
# This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
with open(filepath, encoding="ISO-8859-1") as f:
csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True)
next(csv_reader, None)
for row_id, row in enumerate(csv_reader):
if split == "Answers":
id_, owner_user_id, creation_date, parent_id, score, body = row
if owner_user_id == "NA":
owner_user_id = -1 # Set N/A's to default -1 value
yield row_id, {
"Id": id_,
"OwnerUserId": owner_user_id,
"CreationDate": creation_date,
"ParentId": parent_id,
"Score": score,
"Body": body,
}
elif split == "Questions":
id_, owner_user_id, creation_date, closed_date, score, title, body = row
if owner_user_id == "NA":
owner_user_id = -1 # Set N/A's to default -1 value
yield row_id, {
"Id": id_,
"OwnerUserId": owner_user_id,
"CreationDate": creation_date,
"ClosedDate": closed_date,
"Score": score,
"Title": title,
"Body": body,
}
else:
id_, tag = row
yield row_id, {
"Id": id_,
"Tag": tag,
}
|