Datasets:
Tasks:
Tabular Regression
Modalities:
Text
Formats:
csv
Languages:
English
Size:
10K - 100K
DOI:
License:
Update README.md
Browse files
README.md
CHANGED
@@ -129,40 +129,48 @@ it can be either rounded by the researchers to full years, or converted from mon
|
|
129 |
|
130 |
### Benchmark a new aging clock
|
131 |
|
132 |
-
First install our nice [library](https://github.com/ComputationalAgingLab/ComputAge) for convenient
|
|
|
133 |
|
134 |
`pip install computage`
|
135 |
|
136 |
-
Now, suppose you trained
|
|
|
|
|
137 |
```python
|
138 |
from computage import run_benchmark
|
139 |
|
140 |
-
#first define
|
141 |
-
#
|
142 |
-
imputation = '
|
|
|
|
|
143 |
models_config = {
|
144 |
-
|
145 |
'HorvathV1':{'imputation':imputation},
|
146 |
'Hannum':{'imputation':imputation},
|
147 |
'PhenoAgeV2':{'imputation':imputation},
|
148 |
},
|
149 |
-
#here we
|
150 |
-
#to the pickle file (.pkl)
|
151 |
-
|
152 |
#'my_new_model_name': {'path':/path/to/model.pkl}
|
153 |
}
|
154 |
}
|
155 |
-
|
|
|
156 |
bench = run_benchmark(models_config,
|
157 |
experiment_prefix='my_model_test',
|
158 |
output_folder='./benchmark'
|
159 |
)
|
160 |
-
|
|
|
161 |
```
|
162 |
|
163 |
### Explore the dataset
|
164 |
|
165 |
-
In case you want just to explore our dataset locally, use the following commands for downloading
|
|
|
166 |
```python
|
167 |
from huggingface_hub import snapshot_download
|
168 |
snapshot_download(
|
@@ -170,13 +178,16 @@ snapshot_download(
|
|
170 |
repo_type="dataset",
|
171 |
local_dir='.')
|
172 |
```
|
|
|
173 |
Once downloaded, the dataset can be open with `pandas` (or any other `parquet` reader).
|
|
|
174 |
```python
|
175 |
import pandas as pd
|
176 |
-
|
|
|
177 |
df = pd.read_parquet('data/computage_bench_data_GSE100264.parquet').T
|
178 |
-
#note we transpose data for more convenient perception
|
179 |
-
#
|
180 |
meta = pd.read_csv('computage_bench_meta.tsv', sep='\t', index_col=0)
|
181 |
```
|
182 |
|
|
|
129 |
|
130 |
### Benchmark a new aging clock
|
131 |
|
132 |
+
First, install our nice [library](https://github.com/ComputationalAgingLab/ComputAge) for convenient interaction with datasets and other tools built to design
|
133 |
+
aging clocks:
|
134 |
|
135 |
`pip install computage`
|
136 |
|
137 |
+
Now, suppose you have trained your brand-new epigenetic aging clock model using the classic `scikit-learn` library. You saved your model as `pickle` file.
|
138 |
+
Then, the following block of code can be used to benchmark your model. We also added several published aging clock models for comparison.
|
139 |
+
|
140 |
```python
|
141 |
from computage import run_benchmark
|
142 |
|
143 |
+
# first, define a method to impute NaNs for the in_library models
|
144 |
+
# we recommend using imputation with gold standard values from the [SeSAMe package](https://github.com/zwdzwd/sesame)
|
145 |
+
imputation = 'sesame_450k'
|
146 |
+
|
147 |
+
# for example, take these three clock models for benchmarking
|
148 |
models_config = {
|
149 |
+
'in_library':{
|
150 |
'HorvathV1':{'imputation':imputation},
|
151 |
'Hannum':{'imputation':imputation},
|
152 |
'PhenoAgeV2':{'imputation':imputation},
|
153 |
},
|
154 |
+
# here we can define a name of our new model, as well as path
|
155 |
+
# to the pickle file (.pkl) that contains it
|
156 |
+
'new_models':{
|
157 |
#'my_new_model_name': {'path':/path/to/model.pkl}
|
158 |
}
|
159 |
}
|
160 |
+
|
161 |
+
# run the benchmark
|
162 |
bench = run_benchmark(models_config,
|
163 |
experiment_prefix='my_model_test',
|
164 |
output_folder='./benchmark'
|
165 |
)
|
166 |
+
|
167 |
+
# upon completion, the results will be saved in the folder you have specified for output
|
168 |
```
|
169 |
|
170 |
### Explore the dataset
|
171 |
|
172 |
+
In case you want just to explore our dataset locally, use the following commands for downloading:
|
173 |
+
|
174 |
```python
|
175 |
from huggingface_hub import snapshot_download
|
176 |
snapshot_download(
|
|
|
178 |
repo_type="dataset",
|
179 |
local_dir='.')
|
180 |
```
|
181 |
+
|
182 |
Once downloaded, the dataset can be open with `pandas` (or any other `parquet` reader).
|
183 |
+
|
184 |
```python
|
185 |
import pandas as pd
|
186 |
+
|
187 |
+
# let's choose a study id, for example `GSE100264`
|
188 |
df = pd.read_parquet('data/computage_bench_data_GSE100264.parquet').T
|
189 |
+
# note that we transpose data for a more convenient perception of samples and features
|
190 |
+
# don't forget to explore metadata (which is common for all datasets):
|
191 |
meta = pd.read_csv('computage_bench_meta.tsv', sep='\t', index_col=0)
|
192 |
```
|
193 |
|