yangwang825 commited on
Commit
b433a1f
·
verified ·
1 Parent(s): 993153f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -4
README.md CHANGED
@@ -23,16 +23,16 @@ dataset_info:
23
  '9': rock
24
  splits:
25
  - name: train
26
- num_bytes: 586664927.0
27
  num_examples: 443
28
  - name: validation
29
- num_bytes: 260793810.0
30
  num_examples: 197
31
  - name: test
32
- num_bytes: 383984112.0
33
  num_examples: 290
34
  download_size: 1230811404
35
- dataset_size: 1231442849.0
36
  configs:
37
  - config_name: default
38
  data_files:
@@ -42,4 +42,57 @@ configs:
42
  path: data/validation-*
43
  - split: test
44
  path: data/test-*
 
 
 
 
 
 
45
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  '9': rock
24
  splits:
25
  - name: train
26
+ num_bytes: 586664927
27
  num_examples: 443
28
  - name: validation
29
+ num_bytes: 260793810
30
  num_examples: 197
31
  - name: test
32
+ num_bytes: 383984112
33
  num_examples: 290
34
  download_size: 1230811404
35
+ dataset_size: 1231442849
36
  configs:
37
  - config_name: default
38
  data_files:
 
42
  path: data/validation-*
43
  - split: test
44
  path: data/test-*
45
+ task_categories:
46
+ - audio-classification
47
+ tags:
48
+ - audio
49
+ - multiclass
50
+ - music
51
  ---
52
+
53
+ # GTZAN Music Genre Classification
54
+
55
+ GTZAN consists of 100 30-second recording excerpts in each of 10 categories, and is the most-used public dataset in music information retrieval (MIR) research.
56
+ Following Kereliuk et al. (2015), we use the "fault-filtered" partitioning version of GTZAN, which is constructed by hand to include 443/197/290 excerpts.
57
+ This version of database could be found and downloaded from [here](https://www.kaggle.com/datasets/carlthome/gtzan-genre-collection).
58
+
59
+ ## Citations
60
+
61
+ ```bibtex
62
+ @article{kereliuk2015deep,
63
+ title={Deep learning and music adversaries},
64
+ author={Kereliuk, Corey and Sturm, Bob L and Larsen, Jan},
65
+ journal={IEEE Transactions on Multimedia},
66
+ volume={17},
67
+ number={11},
68
+ pages={2059--2071},
69
+ year={2015},
70
+ publisher={IEEE}
71
+ }
72
+ ```
73
+
74
+ ```bibtex
75
+ @article{sturm2014state,
76
+ title={The state of the art ten years after a state of the art: Future research in music information retrieval},
77
+ author={Sturm, Bob L},
78
+ journal={Journal of new music research},
79
+ volume={43},
80
+ number={2},
81
+ pages={147--172},
82
+ year={2014},
83
+ publisher={Taylor \& Francis}
84
+ }
85
+ ```
86
+
87
+ ```bibtex
88
+ @article{tzanetakis2002musical,
89
+ title={Musical genre classification of audio signals},
90
+ author={Tzanetakis, George and Cook, Perry},
91
+ journal={IEEE Transactions on speech and audio processing},
92
+ volume={10},
93
+ number={5},
94
+ pages={293--302},
95
+ year={2002},
96
+ publisher={IEEE}
97
+ }
98
+ ```