File size: 10,942 Bytes
6e5cc8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""A wrapper for dm_control environments which applies color distractions."""
import os
from PIL import Image
import collections
from dm_control.rl import control
import numpy as np
import tensorflow as tf
from dm_control.mujoco.wrapper import mjbindings
DAVIS17_TRAINING_VIDEOS = [
'bear', 'bmx-bumps', 'boat', 'boxing-fisheye', 'breakdance-flare', 'bus',
'car-turn', 'cat-girl', 'classic-car', 'color-run', 'crossing',
'dance-jump', 'dancing', 'disc-jockey', 'dog-agility', 'dog-gooses',
'dogs-scale', 'drift-turn', 'drone', 'elephant', 'flamingo', 'hike',
'hockey', 'horsejump-low', 'kid-football', 'kite-walk', 'koala',
'lady-running', 'lindy-hop', 'longboard', 'lucia', 'mallard-fly',
'mallard-water', 'miami-surf', 'motocross-bumps', 'motorbike', 'night-race',
'paragliding', 'planes-water', 'rallye', 'rhino', 'rollerblade',
'schoolgirls', 'scooter-board', 'scooter-gray', 'sheep', 'skate-park',
'snowboard', 'soccerball', 'stroller', 'stunt', 'surf', 'swing', 'tennis',
'tractor-sand', 'train', 'tuk-tuk', 'upside-down', 'varanus-cage', 'walking'
]
DAVIS17_VALIDATION_VIDEOS = [
'bike-packing', 'blackswan', 'bmx-trees', 'breakdance', 'camel',
'car-roundabout', 'car-shadow', 'cows', 'dance-twirl', 'dog', 'dogs-jump',
'drift-chicane', 'drift-straight', 'goat', 'gold-fish', 'horsejump-high',
'india', 'judo', 'kite-surf', 'lab-coat', 'libby', 'loading', 'mbike-trick',
'motocross-jump', 'paragliding-launch', 'parkour', 'pigs', 'scooter-black',
'shooting', 'soapbox'
]
SKY_TEXTURE_INDEX = 0
Texture = collections.namedtuple('Texture', ('size', 'address', 'textures'))
def imread(filename):
img = Image.open(filename)
img_np = np.asarray(img)
return img_np
def size_and_flatten(image, ref_height, ref_width):
# Resize image if necessary and flatten the result.
image_height, image_width = image.shape[:2]
if image_height != ref_height or image_width != ref_width:
image = tf.cast(tf.image.resize(image, [ref_height, ref_width]), tf.uint8)
return tf.reshape(image, [-1]).numpy()
def blend_to_background(alpha, image, background):
if alpha == 1.0:
return image
elif alpha == 0.0:
return background
else:
return (alpha * image.astype(np.float32)
+ (1. - alpha) * background.astype(np.float32)).astype(np.uint8)
class DistractingBackgroundEnv(control.Environment):
"""Environment wrapper for background visual distraction.
**NOTE**: This wrapper should be applied BEFORE the pixel wrapper to make sure
the background image changes are applied before rendering occurs.
"""
def __init__(self,
env,
dataset_path=None,
dataset_videos=None,
video_alpha=1.0,
ground_plane_alpha=1.0,
num_videos=None,
dynamic=False,
seed=None,
shuffle_buffer_size=None,
fixed=False,
):
if not 0 <= video_alpha <= 1:
raise ValueError('`video_alpha` must be in the range [0, 1]')
self._env = env
self._video_alpha = video_alpha
self._ground_plane_alpha = ground_plane_alpha
self._random_state = np.random.RandomState(seed=seed)
self._dynamic = dynamic
self._shuffle_buffer_size = shuffle_buffer_size
self._background = None
self._current_img_index = 0
if not dataset_path or num_videos == 0:
# Allow running the wrapper without backgrounds to still set the ground
# plane alpha value.
self._video_paths = []
else:
# Use all videos if no specific ones were passed.
if not dataset_videos:
dataset_videos = sorted(tf.io.gfile.listdir(dataset_path))
# Replace video placeholders 'train'/'val' with the list of videos.
elif dataset_videos in ['train', 'training']:
dataset_videos = DAVIS17_TRAINING_VIDEOS
elif dataset_videos in ['val', 'validation']:
dataset_videos = DAVIS17_VALIDATION_VIDEOS
# Get complete paths for all videos.
video_paths = [
os.path.join(dataset_path, subdir) for subdir in dataset_videos
]
# Optionally use only the first num_paths many paths.
if num_videos is not None:
if num_videos > len(video_paths) or num_videos < 0:
raise ValueError(f'`num_bakground_paths` is {num_videos} but '
'should not be larger than the number of available '
f'background paths ({len(video_paths)}) and at '
'least 0.')
video_paths = video_paths[:num_videos]
self._video_paths = video_paths
self.fixed = fixed
self.first_reset = False
def reset(self):
"""Reset the background state."""
time_step = self._env.reset()
if not self.fixed or not self.first_reset:
self._reset_background()
self.first_reset = True
return time_step
def _reset_background(self):
# Make grid semi-transparent.
if self._ground_plane_alpha is not None:
self._env.physics.named.model.mat_rgba['grid',
'a'] = self._ground_plane_alpha
# For some reason the height of the skybox is set to 4800 by default,
# which does not work with new textures.
self._env.physics.model.tex_height[SKY_TEXTURE_INDEX] = 800
# Set the sky texture reference.
sky_height = self._env.physics.model.tex_height[SKY_TEXTURE_INDEX]
sky_width = self._env.physics.model.tex_width[SKY_TEXTURE_INDEX]
sky_size = sky_height * sky_width * 3
sky_address = self._env.physics.model.tex_adr[SKY_TEXTURE_INDEX]
sky_texture = self._env.physics.model.tex_rgb[sky_address:sky_address +
sky_size].astype(np.float32)
if self._video_paths:
if self._shuffle_buffer_size:
# Shuffle images from all videos together to get background frames.
file_names = [
os.path.join(path, fn)
for path in self._video_paths
for fn in tf.io.gfile.listdir(path)
]
self._random_state.shuffle(file_names)
# Load only the first n images for performance reasons.
file_names = file_names[:self._shuffle_buffer_size]
images = [imread(fn) for fn in file_names]
else:
# Randomly pick a video and load all images.
video_path = self._random_state.choice(self._video_paths)
file_names = tf.io.gfile.listdir(video_path)
if not self._dynamic:
# Randomly pick a single static frame.
# file_names = [self._random_state.choice(file_names)]
file_names.sort()
file_names = [file_names[0]]
images = [imread(os.path.join(video_path, fn)) for fn in file_names]
# Pick a random starting point and steping direction.
self._current_img_index = self._random_state.choice(len(images))
self._step_direction = self._random_state.choice([-1, 1])
# Prepare images in the texture format by resizing and flattening.
# Generate image textures.
texturized_images = []
for image in images:
image_flattened = size_and_flatten(image, sky_height, sky_width)
new_texture = blend_to_background(self._video_alpha, image_flattened,
sky_texture)
texturized_images.append(new_texture)
else:
self._current_img_index = 0
texturized_images = [sky_texture]
self._background = Texture(sky_size, sky_address, texturized_images)
self._apply()
def step(self, action):
time_step = self._env.step(action)
if time_step.first():
self._reset_background()
return time_step
if self._dynamic and self._video_paths:
# Move forward / backward in the image sequence by updating the index.
self._current_img_index += self._step_direction
# Start moving forward if we are past the start of the images.
if self._current_img_index <= 0:
self._current_img_index = 0
self._step_direction = abs(self._step_direction)
# Start moving backwards if we are past the end of the images.
if self._current_img_index >= len(self._background.textures):
self._current_img_index = len(self._background.textures) - 1
self._step_direction = -abs(self._step_direction)
self._apply()
return time_step
def _apply(self):
"""Apply the background texture to the physics."""
if self._background:
start = self._background.address
end = self._background.address + self._background.size
texture = self._background.textures[self._current_img_index]
self._env.physics.model.tex_rgb[start:end] = texture
# Upload the new texture to the GPU. Note: we need to make sure that the
# OpenGL context belonging to this Physics instance is the current one.
with self._env.physics.contexts.gl.make_current() as ctx:
ctx.call(
mjbindings.mjlib.mjr_uploadTexture,
self._env.physics.model.ptr,
self._env.physics.contexts.mujoco.ptr,
SKY_TEXTURE_INDEX,
)
# Forward property and method calls to self._env.
def __getattr__(self, attr):
if hasattr(self._env, attr):
return getattr(self._env, attr)
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
|