File size: 13,940 Bytes
6e5cc8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""A wrapper for dm_control environments which applies camera distractions."""
import copy
from dm_control.rl import control
import numpy as np
CAMERA_MODES = ['fixed', 'track', 'trackcom', 'targetbody', 'targetbodycom']
def eul2mat(theta):
"""Converts euler angles (x, y, z) to a rotation matrix."""
return np.array([
[
np.cos(theta[1]) * np.cos(theta[2]),
np.sin(theta[0]) * np.sin(theta[1]) * np.cos(theta[2]) -
np.sin(theta[2]) * np.cos(theta[0]),
np.sin(theta[1]) * np.cos(theta[0]) * np.cos(theta[2]) +
np.sin(theta[0]) * np.sin(theta[2])
],
[
np.sin(theta[2]) * np.cos(theta[1]),
np.sin(theta[0]) * np.sin(theta[1]) * np.sin(theta[2]) +
np.cos(theta[0]) * np.cos(theta[2]),
np.sin(theta[1]) * np.sin(theta[2]) * np.cos(theta[0]) -
np.sin(theta[0]) * np.cos(theta[2])
],
[
-np.sin(theta[1]),
np.sin(theta[0]) * np.cos(theta[1]),
np.cos(theta[0]) * np.cos(theta[1])
],
])
def _mat_from_theta(cos_theta, sin_theta, a):
"""Builds a rotation matrix from theta and an orientation vector."""
row1 = [
cos_theta + a[0] ** 2. * (1. - cos_theta),
a[0] * a[1] * (1 - cos_theta) - a[2] * sin_theta,
a[0] * a[2] * (1 - cos_theta) + a[1] * sin_theta
]
row2 = [
a[1] * a[0] * (1 - cos_theta) + a[2] * sin_theta,
cos_theta + a[1] ** 2. * (1 - cos_theta),
a[1] * a[2] * (1. - cos_theta) - a[0] * sin_theta
]
row3 = [
a[2] * a[0] * (1. - cos_theta) - a[1] * sin_theta,
a[2] * a[1] * (1. - cos_theta) + a[0] * sin_theta,
cos_theta + (a[2] ** 2.) * (1. - cos_theta)
]
return np.stack([row1, row2, row3])
def rotvec2mat(theta, vec):
"""Converts a rotation around a vector to a rotation matrix."""
a = vec / np.sqrt(np.sum(vec ** 2.))
sin_theta = np.sin(theta)
cos_theta = np.cos(theta)
return _mat_from_theta(cos_theta, sin_theta, a)
def get_lookat_xmat_no_roll(agent_pos, camera_pos):
"""Solves for the cam rotation centering the agent with 0 roll."""
# NOTE(austinstone): This method leads to wild oscillations around the north
# and south polls.
# For example, if agent is at (0., 0., 0.) and the camera is at (.01, 0., 1.),
# this will produce a yaw of 90 degrees whereas if the camera is slightly
# adjacent at (-.01, 0., 1.) this will produce a yaw of -90 degrees. I'm
# not sure what the fix is, as this seems like the behavior we want in all
# environments except for reacher.
delta_vec = agent_pos - camera_pos
delta_vec /= np.sqrt(np.sum(delta_vec ** 2.))
yaw = np.arctan2(delta_vec[0], delta_vec[1])
pitch = np.arctan2(delta_vec[2], np.sqrt(np.sum(delta_vec[:2] ** 2.)))
pitch += np.pi / 2. # Camera starts out looking at [0, 0, -1.]
return eul2mat([pitch, 0., -yaw]).flatten()
def get_lookat_xmat(agent_pos, camera_pos):
"""Solves for the cam rotation centering the agent, allowing roll."""
# Solve for the rotation which centers the agent in the scene.
delta_vec = agent_pos - camera_pos
delta_vec /= np.sqrt(np.sum(delta_vec ** 2.))
y_vec = np.array([0., 0., -1.]) # This is where the cam starts from.
a = np.cross(y_vec, delta_vec)
sin_theta = np.sqrt(np.sum(a ** 2.))
cos_theta = np.dot(delta_vec, y_vec)
a /= (np.sqrt(np.sum(a ** 2.)) + .0001)
return _mat_from_theta(cos_theta, sin_theta, a)
def cart2sphere(cart):
r = np.sqrt(np.sum(cart ** 2.))
h_angle = np.arctan2(cart[1], cart[0])
v_angle = np.arctan2(np.sqrt(np.sum(cart[:2] ** 2.)), cart[2])
return np.array([r, h_angle, v_angle])
def sphere2cart(sphere):
r, h_angle, v_angle = sphere
x = r * np.sin(v_angle) * np.cos(h_angle)
y = r * np.sin(v_angle) * np.sin(h_angle)
z = r * np.cos(v_angle)
return np.array([x, y, z])
def clip_cam_position(position, min_radius, max_radius, min_h_angle,
max_h_angle, min_v_angle, max_v_angle):
new_position = [-1., -1., -1.]
new_position[0] = np.clip(position[0], min_radius, max_radius)
new_position[1] = np.clip(position[1], min_h_angle, max_h_angle)
new_position[2] = np.clip(position[2], min_v_angle, max_v_angle)
return new_position
def get_lookat_point(physics, camera_id):
"""Get the point that the camera is looking at.
It is assumed that the "point" the camera looks at the agent distance
away and projected along the camera viewing matrix.
Args:
physics: mujoco physics objects
camera_id: int
Returns:
position: float32 np.array of length 3
"""
dist_to_agent = physics.named.data.cam_xpos[
camera_id] - physics.named.data.subtree_com[1]
dist_to_agent = np.sqrt(np.sum(dist_to_agent ** 2.))
initial_viewing_mat = copy.deepcopy(physics.named.data.cam_xmat[camera_id])
initial_viewing_mat = np.reshape(initial_viewing_mat, (3, 3))
z_vec = np.array([0., 0., -dist_to_agent])
rotated_vec = np.dot(initial_viewing_mat, z_vec)
return rotated_vec + physics.named.data.cam_xpos[camera_id]
class DistractingCameraEnv(control.Environment):
"""Environment wrapper for camera pose visual distraction.
**NOTE**: This wrapper should be applied BEFORE the pixel wrapper to make sure
the camera pose changes are applied before rendering occurs.
"""
def __init__(self,
env,
camera_id,
horizontal_delta,
vertical_delta,
max_vel,
vel_std,
roll_delta,
max_roll_vel,
roll_std,
max_zoom_in_percent,
max_zoom_out_percent,
limit_to_upper_quadrant=False,
seed=None,
fixed=False,
):
self._env = env
self._camera_id = camera_id
self._horizontal_delta = horizontal_delta
self._vertical_delta = vertical_delta
self._horizontal_delta = horizontal_delta
self._vertical_delta = vertical_delta
self._max_vel = max_vel
self._vel_std = vel_std
self._roll_delta = roll_delta
self._max_roll_vel = max_roll_vel
self._roll_vel_std = roll_std
self._max_zoom_in_percent = max_zoom_in_percent
self._max_zoom_out_percent = max_zoom_out_percent
self._limit_to_upper_quadrant = limit_to_upper_quadrant
self._random_state = np.random.RandomState(seed=seed)
# These camera state parameters will be set on the first reset call.
self._camera_type = None
self._camera_initial_lookat_point = None
self._camera_vel = None
self._max_h_angle = None
self._max_v_angle = None
self._min_h_angle = None
self._min_v_angle = None
self._radius = None
self._roll_vel = None
self._vel_scaling = None
self.fixed = fixed
self.first_reset = False
def setup_camera(self):
"""Set up camera motion ranges and state."""
# Define boundaries on the range of the camera motion.
mode = self._env._physics.model.cam_mode[0]
camera_type = CAMERA_MODES[mode]
assert camera_type in ['fixed', 'trackcom']
self._camera_type = camera_type
self._cam_initial_lookat_point = get_lookat_point(self._env.physics,
self._camera_id)
start_pos = copy.deepcopy(
self._env.physics.named.data.cam_xpos[self._camera_id])
if self._camera_type != 'fixed':
# Center the camera relative to the agent's center of mass.
start_pos -= self._env.physics.named.data.subtree_com[1]
start_r, start_h_angle, start_v_angle = cart2sphere(start_pos)
# Scale the velocity by the starting radius. Most environments have radius 4,
# but this downscales the velocity for the envs with radius < 4.
self._vel_scaling = start_r / 4.
self._max_h_angle = start_h_angle + self._horizontal_delta
self._min_h_angle = start_h_angle - self._horizontal_delta
self._max_v_angle = start_v_angle + self._vertical_delta
self._min_v_angle = start_v_angle - self._vertical_delta
if self._limit_to_upper_quadrant:
# A centered cam is at np.pi / 2.
self._max_v_angle = min(self._max_v_angle, np.pi / 2.)
self._min_v_angle = max(self._min_v_angle, 0.)
# A centered cam is at -np.pi / 2.
self._max_h_angle = min(self._max_h_angle, 0.)
self._min_h_angle = max(self._min_h_angle, -np.pi)
self._max_roll = self._roll_delta
self._min_roll = -self._roll_delta
self._min_radius = max(start_r - start_r * self._max_zoom_in_percent, 0.)
self._max_radius = start_r + start_r * self._max_zoom_out_percent
# Decide the starting position for the camera.
self._h_angle = self._random_state.uniform(self._min_h_angle,
self._max_h_angle)
self._v_angle = self._random_state.uniform(self._min_v_angle,
self._max_v_angle)
self._radius = self._random_state.uniform(self._min_radius,
self._max_radius)
self._roll = self._random_state.uniform(self._min_roll, self._max_roll)
# Decide the starting velocity for the camera.
vel = self._random_state.randn(3)
vel /= np.sqrt(np.sum(vel ** 2.))
vel *= self._random_state.uniform(0., self._max_vel)
self._camera_vel = vel
self._roll_vel = self._random_state.uniform(-self._max_roll_vel,
self._max_roll_vel)
def reset(self):
"""Reset the camera state. """
time_step = self._env.reset()
if not self.fixed or not self.first_reset:
self.setup_camera()
self.first_reset = True
self._apply()
return time_step
def step(self, action):
time_step = self._env.step(action)
if time_step.first():
self.setup_camera()
self._apply()
return time_step
def _apply(self):
if not self._camera_type:
self.setup_camera()
# Random walk the velocity.
vel_delta = self._random_state.randn(3)
self._camera_vel += vel_delta * self._vel_std * self._vel_scaling
self._roll_vel += self._random_state.randn() * self._roll_vel_std
# Clip velocity if it gets too big.
vel_norm = np.sqrt(np.sum(self._camera_vel ** 2.))
if vel_norm > self._max_vel * self._vel_scaling:
self._camera_vel *= (self._max_vel * self._vel_scaling) / vel_norm
self._roll_vel = np.clip(self._roll_vel, -self._max_roll_vel,
self._max_roll_vel)
cart_cam_pos = sphere2cart([self._radius, self._h_angle, self._v_angle])
# Apply velocity vector to camera
sphere_cam_pos2 = cart2sphere(cart_cam_pos + self._camera_vel)
sphere_cam_pos2 = clip_cam_position(sphere_cam_pos2, self._min_radius,
self._max_radius, self._min_h_angle,
self._max_h_angle, self._min_v_angle,
self._max_v_angle)
self._camera_vel = sphere2cart(sphere_cam_pos2) - cart_cam_pos
self._radius, self._h_angle, self._v_angle = sphere_cam_pos2
roll2 = self._roll + self._roll_vel
roll2 = np.clip(roll2, self._min_roll, self._max_roll)
self._roll_vel = roll2 - self._roll
self._roll = roll2
cart_cam_pos = sphere2cart(sphere_cam_pos2)
if self._limit_to_upper_quadrant:
lookat_method = get_lookat_xmat_no_roll
else:
# This method avoids jitteriness at the pole but allows some roll
# in the camera matrix. This is important for reacher.
lookat_method = get_lookat_xmat
if self._camera_type == 'fixed':
lookat_mat = lookat_method(self._cam_initial_lookat_point,
cart_cam_pos)
else:
# Go from agent centric to world coords
cart_cam_pos += self._env.physics.named.data.subtree_com[1]
lookat_mat = lookat_method(
get_lookat_point(self._env.physics, self._camera_id), cart_cam_pos)
lookat_mat = np.reshape(lookat_mat, (3, 3))
roll_mat = rotvec2mat(self._roll, np.array([0., 0., 1.]))
xmat = np.dot(lookat_mat, roll_mat)
self._env.physics.named.data.cam_xpos[self._camera_id] = cart_cam_pos
self._env.physics.named.data.cam_xmat[self._camera_id] = xmat.flatten()
# Forward property and method calls to self._env.
def __getattr__(self, attr):
if hasattr(self._env, attr):
return getattr(self._env, attr)
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
|