File size: 4,504 Bytes
6e5cc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import collections
import logging
import os
import pathlib
import re
import sys
import warnings

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
logging.getLogger().setLevel('ERROR')
warnings.filterwarnings('ignore', '.*box bound precision lowered.*')

sys.path.append(str(pathlib.Path(__file__).parent))
sys.path.append(str(pathlib.Path(__file__).parent.parent))

import numpy as np
import ruamel.yaml as yaml

from dreamerv2 import agent
from dreamerv2 import common

from dreamerv2.common import Config
from dreamerv2.common import GymWrapper
from dreamerv2.common import RenderImage
from dreamerv2.common import TerminalOutput
from dreamerv2.common import JSONLOutput
from dreamerv2.common import TensorBoardOutput

configs = yaml.safe_load(
    (pathlib.Path(__file__).parent / 'configs.yaml').read_text())
defaults = common.Config(configs.pop('defaults'))


def train(env, config, outputs=None):
    logdir = pathlib.Path(config.logdir).expanduser()
    logdir.mkdir(parents=True, exist_ok=True)
    config.save(logdir / 'config.yaml')
    print(config, '\n')
    print('Logdir', logdir)

    outputs = outputs or [
        common.TerminalOutput(),
        common.JSONLOutput(config.logdir),
        common.TensorBoardOutput(config.logdir),
    ]
    replay = common.Replay(logdir / 'train_episodes', **config.replay)
    step = common.Counter(replay.stats['total_steps'])
    logger = common.Logger(step, outputs, multiplier=config.action_repeat)
    metrics = collections.defaultdict(list)

    should_train = common.Every(config.train_every)
    should_log = common.Every(config.log_every)
    should_video = common.Every(config.log_every)
    should_expl = common.Until(config.expl_until)

    def per_episode(ep):
        length = len(ep['reward']) - 1
        score = float(ep['reward'].astype(np.float64).sum())
        print(f'Episode has {length} steps and return {score:.1f}.')
        logger.scalar('return', score)
        logger.scalar('length', length)
        for key, value in ep.items():
            if re.match(config.log_keys_sum, key):
                logger.scalar(f'sum_{key}', ep[key].sum())
            if re.match(config.log_keys_mean, key):
                logger.scalar(f'mean_{key}', ep[key].mean())
            if re.match(config.log_keys_max, key):
                logger.scalar(f'max_{key}', ep[key].max(0).mean())
        if should_video(step):
            for key in config.log_keys_video:
                logger.video(f'policy_{key}', ep[key])
        logger.add(replay.stats)
        logger.write()

    env = common.GymWrapper(env)
    env = common.ResizeImage(env)
    if hasattr(env.act_space['action'], 'n'):
        env = common.OneHotAction(env)
    else:
        env = common.NormalizeAction(env)
    env = common.TimeLimit(env, config.time_limit)

    driver = common.Driver([env])
    driver.on_episode(per_episode)
    driver.on_step(lambda tran, worker: step.increment())
    driver.on_step(replay.add_step)
    driver.on_reset(replay.add_step)

    prefill = max(0, config.prefill - replay.stats['total_steps'])
    if prefill:
        print(f'Prefill dataset ({prefill} steps).')
        random_agent = common.RandomAgent(env.act_space)
        driver(random_agent, steps=prefill, episodes=1)
        driver.reset()

    print('Create agent.')
    agnt = agent.Agent(config, env.obs_space, env.act_space, step)
    dataset = iter(replay.dataset(**config.dataset))
    train_agent = common.CarryOverState(agnt.train)
    train_agent(next(dataset))
    if (logdir / 'variables.pkl').exists():
        agnt.load(logdir / 'variables.pkl')
    else:
        print('Pretrain agent.')
        for _ in range(config.pretrain):
            train_agent(next(dataset))
    policy = lambda *args: agnt.policy(
        *args, mode='explore' if should_expl(step) else 'train')

    def train_step(tran, worker):
        if should_train(step):
            for _ in range(config.train_steps):
                mets = train_agent(next(dataset))
                [metrics[key].append(value) for key, value in mets.items()]
        if should_log(step):
            for name, values in metrics.items():
                logger.scalar(name, np.array(values, np.float64).mean())
                metrics[name].clear()
            logger.add(agnt.report(next(dataset)))
            logger.write(fps=True)

    driver.on_step(train_step)

    while step < config.steps:
        logger.write()
        driver(policy, steps=config.eval_every)
        agnt.save(logdir / 'variables.pkl')