File size: 5,526 Bytes
6e5cc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np


class Driver:

    def __init__(self, envs, **kwargs):
        self._envs = envs
        self._kwargs = kwargs
        self._on_steps = []
        self._on_resets = []
        self._on_episodes = []
        self._act_spaces = [env.act_space for env in envs]
        self.reset()

    def on_step(self, callback):
        self._on_steps.append(callback)

    def on_reset(self, callback):
        self._on_resets.append(callback)

    def on_episode(self, callback):
        self._on_episodes.append(callback)

    def reset(self):
        self._obs = [None] * len(self._envs)
        self._eps = [None] * len(self._envs)
        self._state = None

    def __call__(self, policy, steps=0, episodes=0):
        step, episode = 0, 0
        while step < steps or episode < episodes:
            obs = {
                i: self._envs[i].reset()
                for i, ob in enumerate(self._obs) if ob is None or ob['is_last']}
            for i, ob in obs.items():
                self._obs[i] = ob() if callable(ob) else ob
                act = {k: np.zeros(v.shape) for k, v in self._act_spaces[i].items()}
                tran = {k: self._convert(v) for k, v in {**ob, **act}.items()}
                [fn(tran, worker=i, **self._kwargs) for fn in self._on_resets]
                self._eps[i] = [tran]
            obs = {k: np.stack([o[k] for o in self._obs]) for k in self._obs[0]}
            actions, self._state = policy(obs, self._state, **self._kwargs)
            actions = [
                {k: np.array(actions[k][i]) for k in actions}
                for i in range(len(self._envs))]
            assert len(actions) == len(self._envs)
            obs = [e.step(a) for e, a in zip(self._envs, actions)]
            obs = [ob() if callable(ob) else ob for ob in obs]
            for i, (act, ob) in enumerate(zip(actions, obs)):
                tran = {k: self._convert(v) for k, v in {**ob, **act}.items()}
                [fn(tran, worker=i, **self._kwargs) for fn in self._on_steps]
                self._eps[i].append(tran)
                step += 1
                if ob['is_last']:
                    ep = self._eps[i]
                    ep = {k: self._convert([t[k] for t in ep]) for k in ep[0]}
                    [fn(ep, **self._kwargs) for fn in self._on_episodes]
                    episode += 1
            self._obs = obs

    def _convert(self, value):
        value = np.array(value)
        if np.issubdtype(value.dtype, np.floating):
            return value.astype(np.float32)
        elif np.issubdtype(value.dtype, np.signedinteger):
            return value.astype(np.int32)
        elif np.issubdtype(value.dtype, np.uint8):
            return value.astype(np.uint8)
        return value


class MultiEnvDriver:

    def __init__(self, envs, modes, **kwargs):
        self._envs = envs
        self._kwargs = kwargs
        self._on_steps = []
        self._on_resets = []
        self._on_episodes = []
        self._act_spaces = [env.act_space for env in envs]
        self.reset()
        self.modes = modes

    def on_step(self, callback):
        self._on_steps.append(callback)

    def on_reset(self, callback):
        self._on_resets.append(callback)

    def on_episode(self, callback):
        self._on_episodes.append(callback)

    def reset(self):
        self._obs = [None] * len(self._envs)
        self._eps = [None] * len(self._envs)
        self._state = None

    def __call__(self, policy, steps=0, episodes=0):
        step, episode = 0, 0
        while step < steps or episode < episodes:
            obs = {
                i: self._envs[i].reset()
                for i, ob in enumerate(self._obs) if ob is None or ob['is_last']}
            for i, ob in obs.items():
                self._obs[i] = ob() if callable(ob) else ob
                act = {k: np.zeros(v.shape) for k, v in self._act_spaces[i].items()}
                tran = {k: self._convert(v) for k, v in {**ob, **act}.items()}
                [fn(tran, worker=i, **self._kwargs) for fn in self._on_resets]
                self._eps[i] = [tran]
            obs = {k: np.stack([o[k] for o in self._obs]) for k in self._obs[0]}
            actions, self._state = policy(obs, self._state, **self._kwargs)
            actions = [
                {k: np.array(actions[k][i]) for k in actions}
                for i in range(len(self._envs))]
            assert len(actions) == len(self._envs)
            obs = [e.step(a) for e, a in zip(self._envs, actions)]
            obs = [ob() if callable(ob) else ob for ob in obs]
            for i, (act, ob) in enumerate(zip(actions, obs)):
                tran = {k: self._convert(v) for k, v in {**ob, **act}.items()}
                [fn(tran, worker=i, **self._kwargs) for fn in self._on_steps]
                self._eps[i].append(tran)
                step += 1
                if ob['is_last']:
                    ep = self._eps[i]
                    ep = {k: self._convert([t[k] for t in ep]) for k in ep[0]}
                    [fn(ep, self.modes[i], **self._kwargs) for fn in self._on_episodes]
                    episode += 1
            self._obs = obs

    def _convert(self, value):
        value = np.array(value)
        if np.issubdtype(value.dtype, np.floating):
            return value.astype(np.float32)
        elif np.issubdtype(value.dtype, np.signedinteger):
            return value.astype(np.int32)
        elif np.issubdtype(value.dtype, np.uint8):
            return value.astype(np.uint8)
        return value