File size: 27,280 Bytes
6e5cc8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 |
import atexit
import os
import sys
import threading
import traceback
import cloudpickle
import gym
import numpy as np
class GymWrapper:
def __init__(self, env, obs_key='image', act_key='action'):
self._env = env
self._obs_is_dict = hasattr(self._env.observation_space, 'spaces')
self._act_is_dict = hasattr(self._env.action_space, 'spaces')
self._obs_key = obs_key
self._act_key = act_key
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
@property
def obs_space(self):
if self._obs_is_dict:
spaces = self._env.observation_space.spaces.copy()
else:
spaces = {self._obs_key: self._env.observation_space}
return {
**spaces,
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
@property
def act_space(self):
if self._act_is_dict:
return self._env.action_space.spaces.copy()
else:
return {self._act_key: self._env.action_space}
def step(self, action):
if not self._act_is_dict:
action = action[self._act_key]
obs, reward, done, info = self._env.step(action)
if not self._obs_is_dict:
obs = {self._obs_key: obs}
obs['reward'] = float(reward)
obs['is_first'] = False
obs['is_last'] = done
obs['is_terminal'] = info.get('is_terminal', done)
return obs
def reset(self):
obs = self._env.reset()
if not self._obs_is_dict:
obs = {self._obs_key: obs}
obs['reward'] = 0.0
obs['is_first'] = True
obs['is_last'] = False
obs['is_terminal'] = False
return obs
class DMC:
def __init__(self, name, action_repeat=1, size=(64, 64), camera=None, **kwargs):
os.environ['MUJOCO_GL'] = 'egl'
domain, task = name.split('_', 1)
if domain == 'cup': # Only domain with multiple words.
domain = 'ball_in_cup'
if domain == 'manip':
from dm_control import manipulation
self._env = manipulation.load(task + '_vision')
elif domain == 'locom':
from dm_control.locomotion.examples import basic_rodent_2020
self._env = getattr(basic_rodent_2020, task)()
else:
from dm_control import suite
self._env = suite.load(domain, task, **kwargs)
self._action_repeat = action_repeat
self._size = size
if camera in (-1, None):
camera = dict(
quadruped_walk=2, quadruped_run=2, quadruped_escape=2,
quadruped_fetch=2, locom_rodent_maze_forage=1,
locom_rodent_two_touch=1,
).get(name, 0)
self._camera = camera
self._ignored_keys = ['orientations', 'height', 'velocity', 'pixels']
for key, value in self._env.observation_spec().items():
if value.shape == (0,):
print(f"Ignoring empty observation key '{key}'.")
self._ignored_keys.append(key)
@property
def obs_space(self):
spaces = {
'image': gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8),
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
for key, value in self._env.observation_spec().items():
if key in self._ignored_keys:
continue
if value.dtype == np.float64:
spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, np.float32)
elif value.dtype == np.uint8:
spaces[key] = gym.spaces.Box(0, 255, value.shape, np.uint8)
else:
raise NotImplementedError(value.dtype)
return spaces
@property
def act_space(self):
spec = self._env.action_spec()
action = gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
return {'action': action}
def step(self, action):
assert np.isfinite(action['action']).all(), action['action']
reward = 0.0
for _ in range(self._action_repeat):
time_step = self._env.step(action['action'])
reward += time_step.reward or 0.0
if time_step.last():
break
assert time_step.discount in (0, 1)
obs = {
'reward': reward,
'is_first': False,
'is_last': time_step.last(),
'is_terminal': time_step.discount == 0,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs
def reset(self):
time_step = self._env.reset()
obs = {
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs
class Atari:
LOCK = threading.Lock()
def __init__(
self, name, action_repeat=4, size=(84, 84), grayscale=True, noops=30,
life_done=False, sticky=True, all_actions=False):
assert size[0] == size[1]
import gym.wrappers
import gym.envs.atari
if name == 'james_bond':
name = 'jamesbond'
with self.LOCK:
env = gym.envs.atari.AtariEnv(
game=name, obs_type='image', frameskip=1,
repeat_action_probability=0.25 if sticky else 0.0,
full_action_space=all_actions)
# Avoid unnecessary rendering in inner env.
env._get_obs = lambda: None
# Tell wrapper that the inner env has no action repeat.
env.spec = gym.envs.registration.EnvSpec('NoFrameskip-v0')
self._env = gym.wrappers.AtariPreprocessing(
env, noops, action_repeat, size[0], life_done, grayscale)
self._size = size
self._grayscale = grayscale
@property
def obs_space(self):
shape = self._size + (1 if self._grayscale else 3,)
return {
'image': gym.spaces.Box(0, 255, shape, np.uint8),
'ram': gym.spaces.Box(0, 255, (128,), np.uint8),
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
@property
def act_space(self):
return {'action': self._env.action_space}
def step(self, action):
image, reward, done, info = self._env.step(action['action'])
if self._grayscale:
image = image[..., None]
return {
'image': image,
'ram': self._env.env._get_ram(),
'reward': reward,
'is_first': False,
'is_last': done,
'is_terminal': done,
}
def reset(self):
with self.LOCK:
image = self._env.reset()
if self._grayscale:
image = image[..., None]
return {
'image': image,
'ram': self._env.env._get_ram(),
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
}
def close(self):
return self._env.close()
class Crafter:
def __init__(self, outdir=None, reward=True, seed=None):
import crafter
self._env = crafter.Env(reward=reward, seed=seed)
self._env = crafter.Recorder(
self._env, outdir,
save_stats=True,
save_video=False,
save_episode=False,
)
self._achievements = crafter.constants.achievements.copy()
@property
def obs_space(self):
spaces = {
'image': self._env.observation_space,
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
'log_reward': gym.spaces.Box(-np.inf, np.inf, (), np.float32),
}
spaces.update({
f'log_achievement_{k}': gym.spaces.Box(0, 2 ** 31 - 1, (), np.int32)
for k in self._achievements})
return spaces
@property
def act_space(self):
return {'action': self._env.action_space}
def step(self, action):
image, reward, done, info = self._env.step(action['action'])
obs = {
'image': image,
'reward': reward,
'is_first': False,
'is_last': done,
'is_terminal': info['discount'] == 0,
'log_reward': info['reward'],
}
obs.update({
f'log_achievement_{k}': v
for k, v in info['achievements'].items()})
return obs
def reset(self):
obs = {
'image': self._env.reset(),
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
'log_reward': 0.0,
}
obs.update({
f'log_achievement_{k}': 0
for k in self._achievements})
return obs
class Dummy:
def __init__(self):
pass
@property
def obs_space(self):
return {
'image': gym.spaces.Box(0, 255, (64, 64, 3), dtype=np.uint8),
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
@property
def act_space(self):
return {'action': gym.spaces.Box(-1, 1, (6,), dtype=np.float32)}
def step(self, action):
return {
'image': np.zeros((64, 64, 3)),
'reward': 0.0,
'is_first': False,
'is_last': False,
'is_terminal': False,
}
def reset(self):
return {
'image': np.zeros((64, 64, 3)),
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
}
class TimeLimit:
def __init__(self, env, duration):
self._env = env
self._duration = duration
self._step = None
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
def step(self, action):
assert self._step is not None, 'Must reset environment.'
obs = self._env.step(action)
self._step += 1
if self._duration and self._step >= self._duration:
obs['is_last'] = True
self._step = None
return obs
def reset(self):
self._step = 0
return self._env.reset()
class NormalizeAction:
def __init__(self, env, key='action'):
self._env = env
self._key = key
space = env.act_space[key]
self._mask = np.isfinite(space.low) & np.isfinite(space.high)
self._low = np.where(self._mask, space.low, -1)
self._high = np.where(self._mask, space.high, 1)
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
@property
def act_space(self):
low = np.where(self._mask, -np.ones_like(self._low), self._low)
high = np.where(self._mask, np.ones_like(self._low), self._high)
space = gym.spaces.Box(low, high, dtype=np.float32)
return {**self._env.act_space, self._key: space}
def step(self, action):
orig = (action[self._key] + 1) / 2 * (self._high - self._low) + self._low
orig = np.where(self._mask, orig, action[self._key])
return self._env.step({**action, self._key: orig})
class OneHotAction:
def __init__(self, env, key='action'):
assert hasattr(env.act_space[key], 'n')
self._env = env
self._key = key
self._random = np.random.RandomState()
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
@property
def act_space(self):
shape = (self._env.act_space[self._key].n,)
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
space.sample = self._sample_action
space.n = shape[0]
return {**self._env.act_space, self._key: space}
def step(self, action):
index = np.argmax(action[self._key]).astype(int)
reference = np.zeros_like(action[self._key])
reference[index] = 1
if not np.allclose(reference, action[self._key]):
raise ValueError(f'Invalid one-hot action:\n{action}')
return self._env.step({**action, self._key: index})
def reset(self):
return self._env.reset()
def _sample_action(self):
actions = self._env.act_space.n
index = self._random.randint(0, actions)
reference = np.zeros(actions, dtype=np.float32)
reference[index] = 1.0
return reference
class ResizeImage:
def __init__(self, env, size=(64, 64)):
self._env = env
self._size = size
self._keys = [
k for k, v in env.obs_space.items()
if len(v.shape) > 1 and v.shape[:2] != size]
print(f'Resizing keys {",".join(self._keys)} to {self._size}.')
if self._keys:
from PIL import Image
self._Image = Image
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
@property
def obs_space(self):
spaces = self._env.obs_space
for key in self._keys:
shape = self._size + spaces[key].shape[2:]
spaces[key] = gym.spaces.Box(0, 255, shape, np.uint8)
return spaces
def step(self, action):
obs = self._env.step(action)
for key in self._keys:
obs[key] = self._resize(obs[key])
return obs
def reset(self):
obs = self._env.reset()
for key in self._keys:
obs[key] = self._resize(obs[key])
return obs
def _resize(self, image):
image = self._Image.fromarray(image)
image = image.resize(self._size, self._Image.NEAREST)
image = np.array(image)
return image
class RenderImage:
def __init__(self, env, key='image'):
self._env = env
self._key = key
self._shape = self._env.render().shape
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
@property
def obs_space(self):
spaces = self._env.obs_space
spaces[self._key] = gym.spaces.Box(0, 255, self._shape, np.uint8)
return spaces
def step(self, action):
obs = self._env.step(action)
obs[self._key] = self._env.render('rgb_array')
return obs
def reset(self):
obs = self._env.reset()
obs[self._key] = self._env.render('rgb_array')
return obs
class Async:
# Message types for communication via the pipe.
_ACCESS = 1
_CALL = 2
_RESULT = 3
_CLOSE = 4
_EXCEPTION = 5
def __init__(self, constructor, strategy='thread'):
self._pickled_ctor = cloudpickle.dumps(constructor)
if strategy == 'process':
import multiprocessing as mp
context = mp.get_context('spawn')
elif strategy == 'thread':
import multiprocessing.dummy as context
else:
raise NotImplementedError(strategy)
self._strategy = strategy
self._conn, conn = context.Pipe()
self._process = context.Process(target=self._worker, args=(conn,))
atexit.register(self.close)
self._process.start()
self._receive() # Ready.
self._obs_space = None
self._act_space = None
def access(self, name):
self._conn.send((self._ACCESS, name))
return self._receive
def call(self, name, *args, **kwargs):
payload = name, args, kwargs
self._conn.send((self._CALL, payload))
return self._receive
def close(self):
try:
self._conn.send((self._CLOSE, None))
self._conn.close()
except IOError:
pass # The connection was already closed.
self._process.join(5)
@property
def obs_space(self):
if not self._obs_space:
self._obs_space = self.access('obs_space')()
return self._obs_space
@property
def act_space(self):
if not self._act_space:
self._act_space = self.access('act_space')()
return self._act_space
def step(self, action, blocking=False):
promise = self.call('step', action)
if blocking:
return promise()
else:
return promise
def reset(self, blocking=False):
promise = self.call('reset')
if blocking:
return promise()
else:
return promise
def _receive(self):
try:
message, payload = self._conn.recv()
except (OSError, EOFError):
raise RuntimeError('Lost connection to environment worker.')
# Re-raise exceptions in the main process.
if message == self._EXCEPTION:
stacktrace = payload
raise Exception(stacktrace)
if message == self._RESULT:
return payload
raise KeyError('Received message of unexpected type {}'.format(message))
def _worker(self, conn):
try:
ctor = cloudpickle.loads(self._pickled_ctor)
env = ctor()
conn.send((self._RESULT, None)) # Ready.
while True:
try:
# Only block for short times to have keyboard exceptions be raised.
if not conn.poll(0.1):
continue
message, payload = conn.recv()
except (EOFError, KeyboardInterrupt):
break
if message == self._ACCESS:
name = payload
result = getattr(env, name)
conn.send((self._RESULT, result))
continue
if message == self._CALL:
name, args, kwargs = payload
result = getattr(env, name)(*args, **kwargs)
conn.send((self._RESULT, result))
continue
if message == self._CLOSE:
break
raise KeyError('Received message of unknown type {}'.format(message))
except Exception:
stacktrace = ''.join(traceback.format_exception(*sys.exc_info()))
print('Error in environment process: {}'.format(stacktrace))
conn.send((self._EXCEPTION, stacktrace))
finally:
try:
conn.close()
except IOError:
pass # The connection was already closed.
class DMCMultitask:
def __init__(self, name, action_repeat=1, size=(64, 64), camera=None):
os.environ['MUJOCO_GL'] = 'egl'
domain, task, xml = name.split('_', 2)
import envs.fb_mtenv_dmc as fb_mtenv_dmc
self._env = fb_mtenv_dmc.load(
domain_name=domain,
task_name=task,
task_kwargs={'xml_file_id': xml},
)
self._action_repeat = action_repeat
self._size = size
if camera in (-1, None):
camera = dict(
quadruped_walk=2, quadruped_run=2, quadruped_escape=2,
quadruped_fetch=2, locom_rodent_maze_forage=1,
locom_rodent_two_touch=1,
).get(name, 0)
self._camera = camera
self._ignored_keys = ['orientations', 'height', 'velocity', 'pixels']
for key, value in self._env.observation_spec().items():
if value.shape == (0,):
print(f"Ignoring empty observation key '{key}'.")
self._ignored_keys.append(key)
@property
def obs_space(self):
spaces = {
'image': gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8),
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
for key, value in self._env.observation_spec().items():
if key in self._ignored_keys:
continue
if value.dtype == np.float64:
spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, np.float32)
elif value.dtype == np.uint8:
spaces[key] = gym.spaces.Box(0, 255, value.shape, np.uint8)
else:
raise NotImplementedError(value.dtype)
return spaces
@property
def act_space(self):
spec = self._env.action_spec()
action = gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
return {'action': action}
def step(self, action):
assert np.isfinite(action['action']).all(), action['action']
reward = 0.0
for _ in range(self._action_repeat):
time_step = self._env.step(action['action'])
reward += time_step.reward or 0.0
if time_step.last():
break
assert time_step.discount in (0, 1)
obs = {
'reward': reward,
'is_first': False,
'is_last': time_step.last(),
'is_terminal': time_step.discount == 0,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs
def reset(self):
time_step = self._env.reset()
obs = {
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs
class DistractingDMC:
def __init__(self, name, action_repeat=1, size=(64, 64), camera=None, **kwargs):
os.environ['MUJOCO_GL'] = 'egl'
domain, task, difficulty = name.split('_', 2)
from envs.distracting_control import suite as dsuite
self._env = dsuite.load(
domain_name=domain,
task_name=task,
difficulty=difficulty,
**kwargs
)
self._action_repeat = action_repeat
self._size = size
if camera in (-1, None):
camera = dict(
quadruped_walk=2, quadruped_run=2, quadruped_escape=2,
quadruped_fetch=2, locom_rodent_maze_forage=1,
locom_rodent_two_touch=1,
).get(name, 0)
self._camera = camera
self._ignored_keys = []
for key, value in self._env.observation_spec().items():
if value.shape == (0,):
print(f"Ignoring empty observation key '{key}'.")
self._ignored_keys.append(key)
@property
def obs_space(self):
spaces = {
'image': gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8),
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
for key, value in self._env.observation_spec().items():
if key in self._ignored_keys:
continue
if value.dtype == np.float64:
spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, np.float32)
elif value.dtype == np.uint8:
spaces[key] = gym.spaces.Box(0, 255, value.shape, np.uint8)
else:
raise NotImplementedError(value.dtype)
return spaces
@property
def act_space(self):
spec = self._env.action_spec()
action = gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
return {'action': action}
def step(self, action):
assert np.isfinite(action['action']).all(), action['action']
reward = 0.0
for _ in range(self._action_repeat):
time_step = self._env.step(action['action'])
reward += time_step.reward or 0.0
if time_step.last():
break
assert time_step.discount in (0, 1)
obs = {
'reward': reward,
'is_first': False,
'is_last': time_step.last(),
'is_terminal': time_step.discount == 0,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs
def reset(self):
time_step = self._env.reset()
obs = {
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs
|