File size: 16,748 Bytes
6e5cc8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import re
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers as tfkl
from tensorflow_probability import distributions as tfd
from tensorflow.keras.mixed_precision import experimental as prec
from .. import common
class EnsembleRSSM(common.Module):
def __init__(
self, ensemble=5, stoch=30, deter=200, hidden=200, discrete=False,
act='elu', norm='none', std_act='softplus', min_std=0.1):
super().__init__()
self._ensemble = ensemble
self._stoch = stoch
self._deter = deter
self._hidden = hidden
self._discrete = discrete
self._act = get_act(act)
self._norm = norm
self._std_act = std_act
self._min_std = min_std
self._cell = GRUCell(self._deter, norm=True)
self._cast = lambda x: tf.cast(x, prec.global_policy().compute_dtype)
def initial(self, batch_size):
dtype = prec.global_policy().compute_dtype
if self._discrete:
state = dict(
logit=tf.zeros([batch_size, self._stoch, self._discrete], dtype),
stoch=tf.zeros([batch_size, self._stoch, self._discrete], dtype),
deter=self._cell.get_initial_state(None, batch_size, dtype))
else:
state = dict(
mean=tf.zeros([batch_size, self._stoch], dtype),
std=tf.zeros([batch_size, self._stoch], dtype),
stoch=tf.zeros([batch_size, self._stoch], dtype),
deter=self._cell.get_initial_state(None, batch_size, dtype))
return state
@tf.function
def observe(self, embed, action, is_first, state=None):
swap = lambda x: tf.transpose(x, [1, 0] + list(range(2, len(x.shape))))
if state is None:
state = self.initial(tf.shape(action)[0])
post, prior = common.static_scan(
lambda prev, inputs: self.obs_step(prev[0], *inputs),
(swap(action), swap(embed), swap(is_first)), (state, state))
post = {k: swap(v) for k, v in post.items()}
prior = {k: swap(v) for k, v in prior.items()}
return post, prior
@tf.function
def imagine(self, action, state=None):
swap = lambda x: tf.transpose(x, [1, 0] + list(range(2, len(x.shape))))
if state is None:
state = self.initial(tf.shape(action)[0])
assert isinstance(state, dict), state
action = swap(action)
prior = common.static_scan(self.img_step, action, state)
prior = {k: swap(v) for k, v in prior.items()}
return prior
def get_feat(self, state):
stoch = self._cast(state['stoch'])
if self._discrete:
shape = stoch.shape[:-2] + [self._stoch * self._discrete]
stoch = tf.reshape(stoch, shape)
return tf.concat([stoch, state['deter']], -1)
def get_dist(self, state, ensemble=False):
if ensemble:
state = self._suff_stats_ensemble(state['deter'])
if self._discrete:
logit = state['logit']
logit = tf.cast(logit, tf.float32)
dist = tfd.Independent(common.OneHotDist(logit), 1)
else:
mean, std = state['mean'], state['std']
mean = tf.cast(mean, tf.float32)
std = tf.cast(std, tf.float32)
dist = tfd.MultivariateNormalDiag(mean, std)
return dist
@tf.function
def obs_step(self, prev_state, prev_action, embed, is_first, sample=True):
# if is_first.any():
prev_state, prev_action = tf.nest.map_structure(
lambda x: tf.einsum(
'b,b...->b...', 1.0 - is_first.astype(x.dtype), x),
(prev_state, prev_action))
prior = self.img_step(prev_state, prev_action, sample)
x = tf.concat([prior['deter'], embed], -1)
x = self.get('obs_out', tfkl.Dense, self._hidden)(x)
x = self.get('obs_out_norm', NormLayer, self._norm)(x)
x = self._act(x)
stats = self._suff_stats_layer('obs_dist', x)
dist = self.get_dist(stats)
stoch = dist.sample() if sample else dist.mode()
post = {'stoch': stoch, 'deter': prior['deter'], **stats}
return post, prior
@tf.function
def img_step(self, prev_state, prev_action, sample=True):
prev_stoch = self._cast(prev_state['stoch'])
prev_action = self._cast(prev_action)
if self._discrete:
shape = prev_stoch.shape[:-2] + [self._stoch * self._discrete]
prev_stoch = tf.reshape(prev_stoch, shape)
x = tf.concat([prev_stoch, prev_action], -1)
x = self.get('img_in', tfkl.Dense, self._hidden)(x)
x = self.get('img_in_norm', NormLayer, self._norm)(x)
x = self._act(x)
deter = prev_state['deter']
deter, _ = self._cell(x, [deter])
stats = self._suff_stats_ensemble(deter)
index = tf.random.uniform((), 0, self._ensemble, tf.int32)
stats = {k: v[index] for k, v in stats.items()}
dist = self.get_dist(stats)
stoch = dist.sample() if sample else dist.mode()
prior = {'stoch': stoch, 'deter': deter, **stats}
return prior
def _suff_stats_ensemble(self, inp):
bs = list(inp.shape[:-1])
inp = inp.reshape([-1, inp.shape[-1]])
stats = []
for k in range(self._ensemble):
x = self.get(f'img_out_{k}', tfkl.Dense, self._hidden)(inp)
x = self.get(f'img_out_norm_{k}', NormLayer, self._norm)(x)
x = self._act(x)
stats.append(self._suff_stats_layer(f'img_dist_{k}', x))
stats = {
k: tf.stack([x[k] for x in stats], 0)
for k, v in stats[0].items()}
stats = {
k: v.reshape([v.shape[0]] + bs + list(v.shape[2:]))
for k, v in stats.items()}
return stats
def _suff_stats_layer(self, name, x):
if self._discrete:
x = self.get(name, tfkl.Dense, self._stoch * self._discrete, None)(x)
logit = tf.reshape(x, x.shape[:-1] + [self._stoch, self._discrete])
return {'logit': logit}
else:
x = self.get(name, tfkl.Dense, 2 * self._stoch, None)(x)
mean, std = tf.split(x, 2, -1)
std = {
'softplus': lambda: tf.nn.softplus(std),
'sigmoid': lambda: tf.nn.sigmoid(std),
'sigmoid2': lambda: 2 * tf.nn.sigmoid(std / 2),
}[self._std_act]()
std = std + self._min_std
return {'mean': mean, 'std': std}
def kl_loss(self, post, prior, forward, balance, free, free_avg):
kld = tfd.kl_divergence
sg = lambda x: tf.nest.map_structure(tf.stop_gradient, x)
lhs, rhs = (prior, post) if forward else (post, prior)
mix = balance if forward else (1 - balance)
if balance == 0.5:
value = kld(self.get_dist(lhs), self.get_dist(rhs))
loss = tf.maximum(value, free).mean()
else:
value_lhs = value = kld(self.get_dist(lhs), self.get_dist(sg(rhs)))
value_rhs = kld(self.get_dist(sg(lhs)), self.get_dist(rhs))
if free_avg:
loss_lhs = tf.maximum(value_lhs.mean(), free)
loss_rhs = tf.maximum(value_rhs.mean(), free)
else:
loss_lhs = tf.maximum(value_lhs, free).mean()
loss_rhs = tf.maximum(value_rhs, free).mean()
loss = mix * loss_lhs + (1 - mix) * loss_rhs
return loss, value
class Encoder(common.Module):
def __init__(
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='elu', norm='none',
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400]):
self.shapes = shapes
self.cnn_keys = [
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
self.mlp_keys = [
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
print('Encoder CNN inputs:', list(self.cnn_keys))
print('Encoder MLP inputs:', list(self.mlp_keys))
self._act = get_act(act)
self._norm = norm
self._cnn_depth = cnn_depth
self._cnn_kernels = cnn_kernels
self._mlp_layers = mlp_layers
@tf.function
def __call__(self, data):
key, shape = list(self.shapes.items())[0]
batch_dims = data[key].shape[:-len(shape)]
data = {
k: tf.reshape(v, (-1,) + tuple(v.shape)[len(batch_dims):])
for k, v in data.items()}
outputs = []
if self.cnn_keys:
outputs.append(self._cnn({k: data[k] for k in self.cnn_keys}))
if self.mlp_keys:
outputs.append(self._mlp({k: data[k] for k in self.mlp_keys}))
output = tf.concat(outputs, -1)
return output.reshape(batch_dims + output.shape[1:])
def _cnn(self, data):
x = tf.concat(list(data.values()), -1)
x = x.astype(prec.global_policy().compute_dtype)
for i, kernel in enumerate(self._cnn_kernels):
depth = 2 ** i * self._cnn_depth
x = self.get(f'conv{i}', tfkl.Conv2D, depth, kernel, 2)(x)
x = self.get(f'convnorm{i}', NormLayer, self._norm)(x)
x = self._act(x)
return x.reshape(tuple(x.shape[:-3]) + (-1,))
def _mlp(self, data):
x = tf.concat(list(data.values()), -1)
x = x.astype(prec.global_policy().compute_dtype)
for i, width in enumerate(self._mlp_layers):
x = self.get(f'dense{i}', tfkl.Dense, width)(x)
x = self.get(f'densenorm{i}', NormLayer, self._norm)(x)
x = self._act(x)
return x
class Decoder(common.Module):
def __init__(
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='elu', norm='none',
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400]):
self._shapes = shapes
self.cnn_keys = [
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
self.mlp_keys = [
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
print('Decoder CNN outputs:', list(self.cnn_keys))
print('Decoder MLP outputs:', list(self.mlp_keys))
self._act = get_act(act)
self._norm = norm
self._cnn_depth = cnn_depth
self._cnn_kernels = cnn_kernels
self._mlp_layers = mlp_layers
def __call__(self, features):
features = tf.cast(features, prec.global_policy().compute_dtype)
outputs = {}
if self.cnn_keys:
outputs.update(self._cnn(features))
if self.mlp_keys:
outputs.update(self._mlp(features))
return outputs
def _cnn(self, features):
channels = {k: self._shapes[k][-1] for k in self.cnn_keys}
ConvT = tfkl.Conv2DTranspose
x = self.get('convin', tfkl.Dense, 32 * self._cnn_depth)(features)
x = tf.reshape(x, [-1, 1, 1, 32 * self._cnn_depth])
for i, kernel in enumerate(self._cnn_kernels):
depth = 2 ** (len(self._cnn_kernels) - i - 2) * self._cnn_depth
act, norm = self._act, self._norm
if i == len(self._cnn_kernels) - 1:
depth, act, norm = sum(channels.values()), tf.identity, 'none'
x = self.get(f'conv{i}', ConvT, depth, kernel, 2)(x)
x = self.get(f'convnorm{i}', NormLayer, norm)(x)
x = act(x)
x = x.reshape(features.shape[:-1] + x.shape[1:])
means = tf.split(x, list(channels.values()), -1)
dists = {
key: tfd.Independent(tfd.Normal(mean, 1), 3)
for (key, shape), mean in zip(channels.items(), means)}
return dists
def _mlp(self, features):
shapes = {k: self._shapes[k] for k in self.mlp_keys}
x = features
for i, width in enumerate(self._mlp_layers):
x = self.get(f'dense{i}', tfkl.Dense, width)(x)
x = self.get(f'densenorm{i}', NormLayer, self._norm)(x)
x = self._act(x)
dists = {}
for key, shape in shapes.items():
dists[key] = self.get(f'dense_{key}', DistLayer, shape)(x)
return dists
class MLP(common.Module):
def __init__(self, shape, layers, units, act='elu', norm='none', **out):
self._shape = (shape,) if isinstance(shape, int) else shape
self._layers = layers
self._units = units
self._norm = norm
self._act = get_act(act)
self._out = out
def __call__(self, features):
x = tf.cast(features, prec.global_policy().compute_dtype)
x = x.reshape([-1, x.shape[-1]])
for index in range(self._layers):
x = self.get(f'dense{index}', tfkl.Dense, self._units)(x)
x = self.get(f'norm{index}', NormLayer, self._norm)(x)
x = self._act(x)
x = x.reshape(features.shape[:-1] + [x.shape[-1]])
return self.get('out', DistLayer, self._shape, **self._out)(x)
class GRUCell(tf.keras.layers.AbstractRNNCell):
def __init__(self, size, norm=False, act='tanh', update_bias=-1, **kwargs):
super().__init__()
self._size = size
self._act = get_act(act)
self._norm = norm
self._update_bias = update_bias
self._layer = tfkl.Dense(3 * size, use_bias=norm is not None, **kwargs)
if norm:
self._norm = tfkl.LayerNormalization(dtype=tf.float32)
@property
def state_size(self):
return self._size
@tf.function
def call(self, inputs, state):
state = state[0] # Keras wraps the state in a list.
parts = self._layer(tf.concat([inputs, state], -1))
if self._norm:
dtype = parts.dtype
parts = tf.cast(parts, tf.float32)
parts = self._norm(parts)
parts = tf.cast(parts, dtype)
reset, cand, update = tf.split(parts, 3, -1)
reset = tf.nn.sigmoid(reset)
cand = self._act(reset * cand)
update = tf.nn.sigmoid(update + self._update_bias)
output = update * cand + (1 - update) * state
return output, [output]
class DistLayer(common.Module):
def __init__(
self, shape, dist='mse', min_std=0.1, init_std=0.0):
self._shape = shape
self._dist = dist
self._min_std = min_std
self._init_std = init_std
def __call__(self, inputs):
out = self.get('out', tfkl.Dense, np.prod(self._shape))(inputs)
out = tf.reshape(out, tf.concat([tf.shape(inputs)[:-1], self._shape], 0))
out = tf.cast(out, tf.float32)
if self._dist in ('normal', 'tanh_normal', 'trunc_normal'):
std = self.get('std', tfkl.Dense, np.prod(self._shape))(inputs)
std = tf.reshape(std, tf.concat([tf.shape(inputs)[:-1], self._shape], 0))
std = tf.cast(std, tf.float32)
if self._dist == 'mse':
dist = tfd.Normal(out, 1.0)
return tfd.Independent(dist, len(self._shape))
if self._dist == 'normal':
dist = tfd.Normal(out, std)
return tfd.Independent(dist, len(self._shape))
if self._dist == 'binary':
dist = tfd.Bernoulli(out)
return tfd.Independent(dist, len(self._shape))
if self._dist == 'tanh_normal':
mean = 5 * tf.tanh(out / 5)
std = tf.nn.softplus(std + self._init_std) + self._min_std
dist = tfd.Normal(mean, std)
dist = tfd.TransformedDistribution(dist, common.TanhBijector())
dist = tfd.Independent(dist, len(self._shape))
return common.SampleDist(dist)
if self._dist == 'trunc_normal':
std = 2 * tf.nn.sigmoid((std + self._init_std) / 2) + self._min_std
dist = common.TruncNormalDist(tf.tanh(out), std, -1, 1)
return tfd.Independent(dist, 1)
if self._dist == 'onehot':
return common.OneHotDist(out)
raise NotImplementedError(self._dist)
class NormLayer(common.Module):
def __init__(self, name):
if name == 'none':
self._layer = None
elif name == 'layer':
self._layer = tfkl.LayerNormalization()
else:
raise NotImplementedError(name)
def __call__(self, features):
if not self._layer:
return features
return self._layer(features)
def get_act(name):
if name == 'none':
return tf.identity
if name == 'mish':
return lambda x: x * tf.math.tanh(tf.nn.softplus(x))
elif hasattr(tf.nn, name):
return getattr(tf.nn, name)
elif hasattr(tf, name):
return getattr(tf, name)
else:
raise NotImplementedError(name)
|