File size: 16,748 Bytes
6e5cc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import re

import numpy as np
import tensorflow as tf
from tensorflow.keras import layers as tfkl
from tensorflow_probability import distributions as tfd
from tensorflow.keras.mixed_precision import experimental as prec

from .. import common


class EnsembleRSSM(common.Module):

    def __init__(
            self, ensemble=5, stoch=30, deter=200, hidden=200, discrete=False,
            act='elu', norm='none', std_act='softplus', min_std=0.1):
        super().__init__()
        self._ensemble = ensemble
        self._stoch = stoch
        self._deter = deter
        self._hidden = hidden
        self._discrete = discrete
        self._act = get_act(act)
        self._norm = norm
        self._std_act = std_act
        self._min_std = min_std
        self._cell = GRUCell(self._deter, norm=True)
        self._cast = lambda x: tf.cast(x, prec.global_policy().compute_dtype)

    def initial(self, batch_size):
        dtype = prec.global_policy().compute_dtype
        if self._discrete:
            state = dict(
                logit=tf.zeros([batch_size, self._stoch, self._discrete], dtype),
                stoch=tf.zeros([batch_size, self._stoch, self._discrete], dtype),
                deter=self._cell.get_initial_state(None, batch_size, dtype))
        else:
            state = dict(
                mean=tf.zeros([batch_size, self._stoch], dtype),
                std=tf.zeros([batch_size, self._stoch], dtype),
                stoch=tf.zeros([batch_size, self._stoch], dtype),
                deter=self._cell.get_initial_state(None, batch_size, dtype))
        return state

    @tf.function
    def observe(self, embed, action, is_first, state=None):
        swap = lambda x: tf.transpose(x, [1, 0] + list(range(2, len(x.shape))))
        if state is None:
            state = self.initial(tf.shape(action)[0])
        post, prior = common.static_scan(
            lambda prev, inputs: self.obs_step(prev[0], *inputs),
            (swap(action), swap(embed), swap(is_first)), (state, state))
        post = {k: swap(v) for k, v in post.items()}
        prior = {k: swap(v) for k, v in prior.items()}
        return post, prior

    @tf.function
    def imagine(self, action, state=None):
        swap = lambda x: tf.transpose(x, [1, 0] + list(range(2, len(x.shape))))
        if state is None:
            state = self.initial(tf.shape(action)[0])
        assert isinstance(state, dict), state
        action = swap(action)
        prior = common.static_scan(self.img_step, action, state)
        prior = {k: swap(v) for k, v in prior.items()}
        return prior

    def get_feat(self, state):
        stoch = self._cast(state['stoch'])
        if self._discrete:
            shape = stoch.shape[:-2] + [self._stoch * self._discrete]
            stoch = tf.reshape(stoch, shape)
        return tf.concat([stoch, state['deter']], -1)

    def get_dist(self, state, ensemble=False):
        if ensemble:
            state = self._suff_stats_ensemble(state['deter'])
        if self._discrete:
            logit = state['logit']
            logit = tf.cast(logit, tf.float32)
            dist = tfd.Independent(common.OneHotDist(logit), 1)
        else:
            mean, std = state['mean'], state['std']
            mean = tf.cast(mean, tf.float32)
            std = tf.cast(std, tf.float32)
            dist = tfd.MultivariateNormalDiag(mean, std)
        return dist

    @tf.function
    def obs_step(self, prev_state, prev_action, embed, is_first, sample=True):
        # if is_first.any():
        prev_state, prev_action = tf.nest.map_structure(
            lambda x: tf.einsum(
                'b,b...->b...', 1.0 - is_first.astype(x.dtype), x),
            (prev_state, prev_action))
        prior = self.img_step(prev_state, prev_action, sample)
        x = tf.concat([prior['deter'], embed], -1)
        x = self.get('obs_out', tfkl.Dense, self._hidden)(x)
        x = self.get('obs_out_norm', NormLayer, self._norm)(x)
        x = self._act(x)
        stats = self._suff_stats_layer('obs_dist', x)
        dist = self.get_dist(stats)
        stoch = dist.sample() if sample else dist.mode()
        post = {'stoch': stoch, 'deter': prior['deter'], **stats}
        return post, prior

    @tf.function
    def img_step(self, prev_state, prev_action, sample=True):
        prev_stoch = self._cast(prev_state['stoch'])
        prev_action = self._cast(prev_action)
        if self._discrete:
            shape = prev_stoch.shape[:-2] + [self._stoch * self._discrete]
            prev_stoch = tf.reshape(prev_stoch, shape)
        x = tf.concat([prev_stoch, prev_action], -1)
        x = self.get('img_in', tfkl.Dense, self._hidden)(x)
        x = self.get('img_in_norm', NormLayer, self._norm)(x)
        x = self._act(x)
        deter = prev_state['deter']
        deter, _ = self._cell(x, [deter])
        stats = self._suff_stats_ensemble(deter)
        index = tf.random.uniform((), 0, self._ensemble, tf.int32)
        stats = {k: v[index] for k, v in stats.items()}
        dist = self.get_dist(stats)
        stoch = dist.sample() if sample else dist.mode()
        prior = {'stoch': stoch, 'deter': deter, **stats}
        return prior

    def _suff_stats_ensemble(self, inp):
        bs = list(inp.shape[:-1])
        inp = inp.reshape([-1, inp.shape[-1]])
        stats = []
        for k in range(self._ensemble):
            x = self.get(f'img_out_{k}', tfkl.Dense, self._hidden)(inp)
            x = self.get(f'img_out_norm_{k}', NormLayer, self._norm)(x)
            x = self._act(x)
            stats.append(self._suff_stats_layer(f'img_dist_{k}', x))
        stats = {
            k: tf.stack([x[k] for x in stats], 0)
            for k, v in stats[0].items()}
        stats = {
            k: v.reshape([v.shape[0]] + bs + list(v.shape[2:]))
            for k, v in stats.items()}
        return stats

    def _suff_stats_layer(self, name, x):
        if self._discrete:
            x = self.get(name, tfkl.Dense, self._stoch * self._discrete, None)(x)
            logit = tf.reshape(x, x.shape[:-1] + [self._stoch, self._discrete])
            return {'logit': logit}
        else:
            x = self.get(name, tfkl.Dense, 2 * self._stoch, None)(x)
            mean, std = tf.split(x, 2, -1)
            std = {
                'softplus': lambda: tf.nn.softplus(std),
                'sigmoid': lambda: tf.nn.sigmoid(std),
                'sigmoid2': lambda: 2 * tf.nn.sigmoid(std / 2),
            }[self._std_act]()
            std = std + self._min_std
            return {'mean': mean, 'std': std}

    def kl_loss(self, post, prior, forward, balance, free, free_avg):
        kld = tfd.kl_divergence
        sg = lambda x: tf.nest.map_structure(tf.stop_gradient, x)
        lhs, rhs = (prior, post) if forward else (post, prior)
        mix = balance if forward else (1 - balance)
        if balance == 0.5:
            value = kld(self.get_dist(lhs), self.get_dist(rhs))
            loss = tf.maximum(value, free).mean()
        else:
            value_lhs = value = kld(self.get_dist(lhs), self.get_dist(sg(rhs)))
            value_rhs = kld(self.get_dist(sg(lhs)), self.get_dist(rhs))
            if free_avg:
                loss_lhs = tf.maximum(value_lhs.mean(), free)
                loss_rhs = tf.maximum(value_rhs.mean(), free)
            else:
                loss_lhs = tf.maximum(value_lhs, free).mean()
                loss_rhs = tf.maximum(value_rhs, free).mean()
            loss = mix * loss_lhs + (1 - mix) * loss_rhs
        return loss, value


class Encoder(common.Module):

    def __init__(
            self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='elu', norm='none',
            cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400]):
        self.shapes = shapes
        self.cnn_keys = [
            k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
        self.mlp_keys = [
            k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
        print('Encoder CNN inputs:', list(self.cnn_keys))
        print('Encoder MLP inputs:', list(self.mlp_keys))
        self._act = get_act(act)
        self._norm = norm
        self._cnn_depth = cnn_depth
        self._cnn_kernels = cnn_kernels
        self._mlp_layers = mlp_layers

    @tf.function
    def __call__(self, data):
        key, shape = list(self.shapes.items())[0]
        batch_dims = data[key].shape[:-len(shape)]
        data = {
            k: tf.reshape(v, (-1,) + tuple(v.shape)[len(batch_dims):])
            for k, v in data.items()}
        outputs = []
        if self.cnn_keys:
            outputs.append(self._cnn({k: data[k] for k in self.cnn_keys}))
        if self.mlp_keys:
            outputs.append(self._mlp({k: data[k] for k in self.mlp_keys}))
        output = tf.concat(outputs, -1)
        return output.reshape(batch_dims + output.shape[1:])

    def _cnn(self, data):
        x = tf.concat(list(data.values()), -1)
        x = x.astype(prec.global_policy().compute_dtype)
        for i, kernel in enumerate(self._cnn_kernels):
            depth = 2 ** i * self._cnn_depth
            x = self.get(f'conv{i}', tfkl.Conv2D, depth, kernel, 2)(x)
            x = self.get(f'convnorm{i}', NormLayer, self._norm)(x)
            x = self._act(x)
        return x.reshape(tuple(x.shape[:-3]) + (-1,))

    def _mlp(self, data):
        x = tf.concat(list(data.values()), -1)
        x = x.astype(prec.global_policy().compute_dtype)
        for i, width in enumerate(self._mlp_layers):
            x = self.get(f'dense{i}', tfkl.Dense, width)(x)
            x = self.get(f'densenorm{i}', NormLayer, self._norm)(x)
            x = self._act(x)
        return x


class Decoder(common.Module):

    def __init__(
            self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='elu', norm='none',
            cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400]):
        self._shapes = shapes
        self.cnn_keys = [
            k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
        self.mlp_keys = [
            k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
        print('Decoder CNN outputs:', list(self.cnn_keys))
        print('Decoder MLP outputs:', list(self.mlp_keys))
        self._act = get_act(act)
        self._norm = norm
        self._cnn_depth = cnn_depth
        self._cnn_kernels = cnn_kernels
        self._mlp_layers = mlp_layers

    def __call__(self, features):
        features = tf.cast(features, prec.global_policy().compute_dtype)
        outputs = {}
        if self.cnn_keys:
            outputs.update(self._cnn(features))
        if self.mlp_keys:
            outputs.update(self._mlp(features))
        return outputs

    def _cnn(self, features):
        channels = {k: self._shapes[k][-1] for k in self.cnn_keys}
        ConvT = tfkl.Conv2DTranspose
        x = self.get('convin', tfkl.Dense, 32 * self._cnn_depth)(features)
        x = tf.reshape(x, [-1, 1, 1, 32 * self._cnn_depth])
        for i, kernel in enumerate(self._cnn_kernels):
            depth = 2 ** (len(self._cnn_kernels) - i - 2) * self._cnn_depth
            act, norm = self._act, self._norm
            if i == len(self._cnn_kernels) - 1:
                depth, act, norm = sum(channels.values()), tf.identity, 'none'
            x = self.get(f'conv{i}', ConvT, depth, kernel, 2)(x)
            x = self.get(f'convnorm{i}', NormLayer, norm)(x)
            x = act(x)
        x = x.reshape(features.shape[:-1] + x.shape[1:])
        means = tf.split(x, list(channels.values()), -1)
        dists = {
            key: tfd.Independent(tfd.Normal(mean, 1), 3)
            for (key, shape), mean in zip(channels.items(), means)}
        return dists

    def _mlp(self, features):
        shapes = {k: self._shapes[k] for k in self.mlp_keys}
        x = features
        for i, width in enumerate(self._mlp_layers):
            x = self.get(f'dense{i}', tfkl.Dense, width)(x)
            x = self.get(f'densenorm{i}', NormLayer, self._norm)(x)
            x = self._act(x)
        dists = {}
        for key, shape in shapes.items():
            dists[key] = self.get(f'dense_{key}', DistLayer, shape)(x)
        return dists


class MLP(common.Module):

    def __init__(self, shape, layers, units, act='elu', norm='none', **out):
        self._shape = (shape,) if isinstance(shape, int) else shape
        self._layers = layers
        self._units = units
        self._norm = norm
        self._act = get_act(act)
        self._out = out

    def __call__(self, features):
        x = tf.cast(features, prec.global_policy().compute_dtype)
        x = x.reshape([-1, x.shape[-1]])
        for index in range(self._layers):
            x = self.get(f'dense{index}', tfkl.Dense, self._units)(x)
            x = self.get(f'norm{index}', NormLayer, self._norm)(x)
            x = self._act(x)
        x = x.reshape(features.shape[:-1] + [x.shape[-1]])
        return self.get('out', DistLayer, self._shape, **self._out)(x)


class GRUCell(tf.keras.layers.AbstractRNNCell):

    def __init__(self, size, norm=False, act='tanh', update_bias=-1, **kwargs):
        super().__init__()
        self._size = size
        self._act = get_act(act)
        self._norm = norm
        self._update_bias = update_bias
        self._layer = tfkl.Dense(3 * size, use_bias=norm is not None, **kwargs)
        if norm:
            self._norm = tfkl.LayerNormalization(dtype=tf.float32)

    @property
    def state_size(self):
        return self._size

    @tf.function
    def call(self, inputs, state):
        state = state[0]  # Keras wraps the state in a list.
        parts = self._layer(tf.concat([inputs, state], -1))
        if self._norm:
            dtype = parts.dtype
            parts = tf.cast(parts, tf.float32)
            parts = self._norm(parts)
            parts = tf.cast(parts, dtype)
        reset, cand, update = tf.split(parts, 3, -1)
        reset = tf.nn.sigmoid(reset)
        cand = self._act(reset * cand)
        update = tf.nn.sigmoid(update + self._update_bias)
        output = update * cand + (1 - update) * state
        return output, [output]


class DistLayer(common.Module):

    def __init__(
            self, shape, dist='mse', min_std=0.1, init_std=0.0):
        self._shape = shape
        self._dist = dist
        self._min_std = min_std
        self._init_std = init_std

    def __call__(self, inputs):
        out = self.get('out', tfkl.Dense, np.prod(self._shape))(inputs)
        out = tf.reshape(out, tf.concat([tf.shape(inputs)[:-1], self._shape], 0))
        out = tf.cast(out, tf.float32)
        if self._dist in ('normal', 'tanh_normal', 'trunc_normal'):
            std = self.get('std', tfkl.Dense, np.prod(self._shape))(inputs)
            std = tf.reshape(std, tf.concat([tf.shape(inputs)[:-1], self._shape], 0))
            std = tf.cast(std, tf.float32)
        if self._dist == 'mse':
            dist = tfd.Normal(out, 1.0)
            return tfd.Independent(dist, len(self._shape))
        if self._dist == 'normal':
            dist = tfd.Normal(out, std)
            return tfd.Independent(dist, len(self._shape))
        if self._dist == 'binary':
            dist = tfd.Bernoulli(out)
            return tfd.Independent(dist, len(self._shape))
        if self._dist == 'tanh_normal':
            mean = 5 * tf.tanh(out / 5)
            std = tf.nn.softplus(std + self._init_std) + self._min_std
            dist = tfd.Normal(mean, std)
            dist = tfd.TransformedDistribution(dist, common.TanhBijector())
            dist = tfd.Independent(dist, len(self._shape))
            return common.SampleDist(dist)
        if self._dist == 'trunc_normal':
            std = 2 * tf.nn.sigmoid((std + self._init_std) / 2) + self._min_std
            dist = common.TruncNormalDist(tf.tanh(out), std, -1, 1)
            return tfd.Independent(dist, 1)
        if self._dist == 'onehot':
            return common.OneHotDist(out)
        raise NotImplementedError(self._dist)


class NormLayer(common.Module):

    def __init__(self, name):
        if name == 'none':
            self._layer = None
        elif name == 'layer':
            self._layer = tfkl.LayerNormalization()
        else:
            raise NotImplementedError(name)

    def __call__(self, features):
        if not self._layer:
            return features
        return self._layer(features)


def get_act(name):
    if name == 'none':
        return tf.identity
    if name == 'mish':
        return lambda x: x * tf.math.tanh(tf.nn.softplus(x))
    elif hasattr(tf.nn, name):
        return getattr(tf.nn, name)
    elif hasattr(tf, name):
        return getattr(tf, name)
    else:
        raise NotImplementedError(name)