File size: 22,657 Bytes
6e5cc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
import argparse
import collections
import functools
import itertools
import json
import multiprocessing as mp
import os
import pathlib
import re
import subprocess
import warnings

os.environ['NO_AT_BRIDGE'] = '1'  # Hide X org false warning.

import matplotlib

matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
import pandas as pd

np.set_string_function(lambda x: f'<np.array shape={x.shape} dtype={x.dtype}>')

Run = collections.namedtuple('Run', 'task method seed xs ys')

PALETTES = dict(
    discrete=(
        '#377eb8', '#4daf4a', '#984ea3', '#e41a1c', '#ff7f00', '#a65628',
        '#f781bf', '#888888', '#a6cee3', '#b2df8a', '#cab2d6', '#fb9a99',
    ),
    contrast=(
        '#0022ff', '#33aa00', '#ff0011', '#ddaa00', '#cc44dd', '#0088aa',
        '#001177', '#117700', '#990022', '#885500', '#553366', '#006666',
    ),
    gradient=(
        '#fde725', '#a0da39', '#4ac16d', '#1fa187', '#277f8e', '#365c8d',
        '#46327e', '#440154',
    ),
    baselines=(
        '#222222', '#666666', '#aaaaaa', '#cccccc',
    ),
)

LEGEND = dict(
    fontsize='medium', numpoints=1, labelspacing=0, columnspacing=1.2,
    handlelength=1.5, handletextpad=0.5, loc='lower center')

DEFAULT_BASELINES = ['d4pg', 'rainbow_sticky', 'human_gamer', 'impala']


def find_keys(args):
    filenames = []
    for indir in args.indir:
        task = next(indir.iterdir())  # First only.
        for method in task.iterdir():
            seed = next(indir.iterdir())  # First only.
            filenames += list(seed.glob('**/*.jsonl'))
    keys = set()
    for filename in filenames:
        keys |= set(load_jsonl(filename).columns)
    print(f'Keys      ({len(keys)}):', ', '.join(keys), flush=True)


def load_runs(args):
    total, toload = [], []
    for indir in args.indir:
        filenames = list(indir.glob('**/*.jsonl'))
        total += filenames
        for filename in filenames:
            task, method, seed = filename.relative_to(indir).parts[:-1]
            if not any(p.search(task) for p in args.tasks):
                continue
            if not any(p.search(method) for p in args.methods):
                continue
            toload.append((filename, indir))
    print(f'Loading {len(toload)} of {len(total)} runs...')
    jobs = [functools.partial(load_run, f, i, args) for f, i in toload]
    # Disable async data loading:
    # runs = [j() for j in jobs]
    with mp.Pool(10) as pool:
        promises = [pool.apply_async(j) for j in jobs]
        runs = [p.get() for p in promises]
    runs = [r for r in runs if r is not None]
    return runs


def load_run(filename, indir, args):
    task, method, seed = filename.relative_to(indir).parts[:-1]
    prefix = f'indir{args.indir.index(indir) + 1}_'
    if task == 'atari_jamesbond':
        task = 'atari_james_bond'
    seed = prefix + seed
    if args.prefix:
        method = prefix + method
    df = load_jsonl(filename)
    if df is None:
        print('Skipping empty run')
        return
    try:
        df = df[[args.xaxis, args.yaxis]].dropna()
        if args.maxval:
            df = df.replace([+np.inf], +args.maxval)
            df = df.replace([-np.inf], -args.maxval)
            df[args.yaxis] = df[args.yaxis].clip(-args.maxval, +args.maxval)
    except KeyError:
        return
    xs = df[args.xaxis].to_numpy()
    if args.xmult != 1:
        xs = xs.astype(np.float32) * args.xmult
    ys = df[args.yaxis].to_numpy()
    bins = {
        'atari': 1e6,
        'dmc': 1e4,
        'crafter': 1e4,
    }.get(task.split('_')[0], 1e5) if args.bins == -1 else args.bins
    if bins:
        borders = np.arange(0, xs.max() + 1e-8, bins)
        xs, ys = bin_scores(xs, ys, borders)
    if not len(xs):
        print('Skipping empty run', task, method, seed)
        return
    return Run(task, method, seed, xs, ys)


def load_baselines(patterns, prefix=False):
    runs = []
    directory = pathlib.Path(__file__).parent.parent / 'scores'
    for filename in directory.glob('**/*_baselines.json'):
        for task, methods in json.loads(filename.read_text()).items():
            for method, score in methods.items():
                if prefix:
                    method = f'baseline_{method}'
                if not any(p.search(method) for p in patterns):
                    continue
                runs.append(Run(task, method, None, None, score))
    return runs


def stats(runs, baselines):
    tasks = sorted(set(r.task for r in runs))
    methods = sorted(set(r.method for r in runs))
    seeds = sorted(set(r.seed for r in runs))
    baseline = sorted(set(r.method for r in baselines))
    print('Loaded', len(runs), 'runs.')
    print(f'Tasks     ({len(tasks)}):', ', '.join(tasks))
    print(f'Methods   ({len(methods)}):', ', '.join(methods))
    print(f'Seeds     ({len(seeds)}):', ', '.join(seeds))
    print(f'Baselines ({len(baseline)}):', ', '.join(baseline))


def order_methods(runs, baselines, args):
    methods = []
    for pattern in args.methods:
        for method in sorted(set(r.method for r in runs)):
            if pattern.search(method):
                if method not in methods:
                    methods.append(method)
                if method not in args.colors:
                    index = len(args.colors) % len(args.palette)
                    args.colors[method] = args.palette[index]
    non_baseline_colors = len(args.colors)
    for pattern in args.baselines:
        for method in sorted(set(r.method for r in baselines)):
            if pattern.search(method):
                if method not in methods:
                    methods.append(method)
                if method not in args.colors:
                    index = len(args.colors) - non_baseline_colors
                    index = index % len(PALETTES['baselines'])
                    args.colors[method] = PALETTES['baselines'][index]
    return methods


def figure(runs, methods, args):
    tasks = sorted(set(r.task for r in runs if r.xs is not None))
    rows = int(np.ceil((len(tasks) + len(args.add)) / args.cols))
    figsize = args.size[0] * args.cols, args.size[1] * rows
    fig, axes = plt.subplots(rows, args.cols, figsize=figsize, squeeze=False)
    for task, ax in zip(tasks, axes.flatten()):
        relevant = [r for r in runs if r.task == task]
        plot(task, ax, relevant, methods, args)
    for name, ax in zip(args.add, axes.flatten()[len(tasks):]):
        ax.set_facecolor((0.9, 0.9, 0.9))
        if name == 'median':
            plot_combined(
                'combined_median', ax, runs, methods, args,
                agg=lambda x: np.nanmedian(x, -1))
        elif name == 'mean':
            plot_combined(
                'combined_mean', ax, runs, methods, args,
                agg=lambda x: np.nanmean(x, -1))
        elif name == 'gamer_median':
            plot_combined(
                'combined_gamer_median', ax, runs, methods, args,
                lo='random', hi='human_gamer',
                agg=lambda x: np.nanmedian(x, -1))
        elif name == 'gamer_mean':
            plot_combined(
                'combined_gamer_mean', ax, runs, methods, args,
                lo='random', hi='human_gamer',
                agg=lambda x: np.nanmean(x, -1))
        elif name == 'record_mean':
            plot_combined(
                'combined_record_mean', ax, runs, methods, args,
                lo='random', hi='record',
                agg=lambda x: np.nanmean(x, -1))
        elif name == 'clip_record_mean':
            plot_combined(
                'combined_clipped_record_mean', ax, runs, methods, args,
                lo='random', hi='record', clip=True,
                agg=lambda x: np.nanmean(x, -1))
        elif name == 'seeds':
            plot_combined(
                'combined_seeds', ax, runs, methods, args,
                agg=lambda x: np.isfinite(x).sum(-1))
        elif name == 'human_above':
            plot_combined(
                'combined_above_human_gamer', ax, runs, methods, args,
                agg=lambda y: (y >= 1.0).astype(float).sum(-1))
        elif name == 'human_below':
            plot_combined(
                'combined_below_human_gamer', ax, runs, methods, args,
                agg=lambda y: (y <= 1.0).astype(float).sum(-1))
        else:
            raise NotImplementedError(name)
    if args.xlim:
        for ax in axes[:-1].flatten():
            ax.xaxis.get_offset_text().set_visible(False)
    if args.xlabel:
        for ax in axes[-1]:
            ax.set_xlabel(args.xlabel)
    if args.ylabel:
        for ax in axes[:, 0]:
            ax.set_ylabel(args.ylabel)
    for ax in axes.flatten()[len(tasks) + len(args.add):]:
        ax.axis('off')
    legend(fig, args.labels, ncol=args.legendcols, **LEGEND)
    return fig


def plot(task, ax, runs, methods, args):
    assert runs
    try:
        title = task.split('_', 1)[1].replace('_', ' ').title()
    except IndexError:
        title = task.title()
    ax.set_title(title)
    xlim = [+np.inf, -np.inf]
    for index, method in enumerate(methods):
        relevant = [r for r in runs if r.method == method]
        if not relevant:
            continue
        if any(r.xs is None for r in relevant):
            baseline(index, method, ax, relevant, args)
        else:
            if args.agg == 'none':
                xs, ys = curve_lines(index, task, method, ax, relevant, args)
            else:
                xs, ys = curve_area(index, task, method, ax, relevant, args)
            if len(xs) == len(ys) == 0:
                print(f'Skipping empty: {task} {method}')
                continue
            xlim = [min(xlim[0], np.nanmin(xs)), max(xlim[1], np.nanmax(xs))]
    ax.ticklabel_format(axis='x', style='sci', scilimits=(0, 0))
    steps = [1, 2, 2.5, 5, 10]
    ax.xaxis.set_major_locator(ticker.MaxNLocator(args.xticks, steps=steps))
    ax.yaxis.set_major_locator(ticker.MaxNLocator(args.yticks, steps=steps))
    if np.isfinite(xlim).all():
        ax.set_xlim(args.xlim or xlim)
    if args.xlim:
        ticks = sorted({*ax.get_xticks(), *args.xlim})
        ticks = [x for x in ticks if args.xlim[0] <= x <= args.xlim[1]]
        ax.set_xticks(ticks)
    if args.ylim:
        ax.set_ylim(args.ylim)
        if args.ylimticks:
            ticks = sorted({*ax.get_yticks(), *args.ylim})
            ticks = [x for x in ticks if args.ylim[0] <= x <= args.ylim[1]]
            ax.set_yticks(ticks)


def plot_combined(
        name, ax, runs, methods, args, agg, lo=None, hi=None, clip=False):
    tasks = sorted(set(run.task for run in runs if run.xs is not None))
    seeds = list(set(run.seed for run in runs))
    runs = [r for r in runs if r.task in tasks]  # Discard unused baselines.
    # Bin all runs onto the same X steps.
    borders = sorted(
        [r.xs for r in runs if r.xs is not None],
        key=lambda x: np.nanmax(x))[-1]
    for index, run in enumerate(runs):
        if run.xs is None:
            continue
        xs, ys = bin_scores(run.xs, run.ys, borders, fill='last')
        runs[index] = run._replace(xs=xs, ys=ys)
    # Per-task normalization by low and high baseline.
    if lo or hi:
        mins = collections.defaultdict(list)
        maxs = collections.defaultdict(list)
        [mins[r.task].append(r.ys) for r in load_baselines([re.compile(lo)])]
        [maxs[r.task].append(r.ys) for r in load_baselines([re.compile(hi)])]
        mins = {task: min(ys) for task, ys in mins.items() if task in tasks}
        maxs = {task: max(ys) for task, ys in maxs.items() if task in tasks}
        missing_baselines = []
        for task in tasks:
            if task not in mins or task not in maxs:
                missing_baselines.append(task)
        if set(missing_baselines) == set(tasks):
            print(f'No baselines found to normalize any tasks in {name} plot.')
        else:
            for task in missing_baselines:
                print(f'No baselines found to normalize {task} in {name} plot.')
        for index, run in enumerate(runs):
            if run.task not in mins or run.task not in maxs:
                continue
            ys = (run.ys - mins[run.task]) / (maxs[run.task] - mins[run.task])
            if clip:
                ys = np.minimum(ys, 1.0)
            runs[index] = run._replace(ys=ys)
    # Aggregate across tasks but not methods or seeds.
    combined = []
    for method, seed in itertools.product(methods, seeds):
        relevant = [r for r in runs if r.method == method and r.seed == seed]
        if not relevant:
            continue
        if relevant[0].xs is None:
            xs, ys = None, np.array([r.ys for r in relevant])
        else:
            xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in relevant]))
        with warnings.catch_warnings():  # Ignore empty slice warnings.
            warnings.simplefilter('ignore', category=RuntimeWarning)
            combined.append(Run('combined', method, seed, xs, agg(ys)))
    plot(name, ax, combined, methods, args)


def curve_lines(index, task, method, ax, runs, args):
    zorder = 10000 - 10 * index - 1
    for run in runs:
        color = args.colors[method]
        ax.plot(run.xs, run.ys, label=method, color=color, zorder=zorder)
    xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in runs]))
    return xs, ys


def curve_area(index, task, method, ax, runs, args):
    xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in runs]))
    with warnings.catch_warnings():  # NaN buckets remain NaN.
        warnings.simplefilter('ignore', category=RuntimeWarning)
        if args.agg == 'std1':
            mean, std = np.nanmean(ys, -1), np.nanstd(ys, -1)
            lo, mi, hi = mean - std, mean, mean + std
        elif args.agg == 'per0':
            lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (0, 50, 100)]
        elif args.agg == 'per5':
            lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (5, 50, 95)]
        elif args.agg == 'per25':
            lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (25, 50, 75)]
        else:
            raise NotImplementedError(args.agg)
    color = args.colors[method]
    kw = dict(color=color, zorder=1000 - 10 * index, alpha=0.1, linewidths=0)
    mask = ~np.isnan(mi)
    xs, lo, mi, hi = xs[mask], lo[mask], mi[mask], hi[mask]
    ax.fill_between(xs, lo, hi, **kw)
    ax.plot(xs, mi, label=method, color=color, zorder=10000 - 10 * index - 1)
    return xs, mi


def baseline(index, method, ax, runs, args):
    assert all(run.xs is None for run in runs)
    ys = np.array([run.ys for run in runs])
    mean, std = ys.mean(), ys.std()
    color = args.colors[method]
    kw = dict(color=color, zorder=500 - 20 * index - 1, alpha=0.1, linewidths=0)
    ax.fill_between([-np.inf, np.inf], [mean - std] * 2, [mean + std] * 2, **kw)
    kw = dict(ls='--', color=color, zorder=5000 - 10 * index - 1)
    ax.axhline(mean, label=method, **kw)


def legend(fig, mapping=None, **kwargs):
    entries = {}
    for ax in fig.axes:
        for handle, label in zip(*ax.get_legend_handles_labels()):
            if mapping and label in mapping:
                label = mapping[label]
            entries[label] = handle
    leg = fig.legend(entries.values(), entries.keys(), **kwargs)
    leg.get_frame().set_edgecolor('white')
    extent = leg.get_window_extent(fig.canvas.get_renderer())
    extent = extent.transformed(fig.transFigure.inverted())
    yloc, xloc = kwargs['loc'].split()
    y0 = dict(lower=extent.y1, center=0, upper=0)[yloc]
    y1 = dict(lower=1, center=1, upper=extent.y0)[yloc]
    x0 = dict(left=extent.x1, center=0, right=0)[xloc]
    x1 = dict(left=1, center=1, right=extent.x0)[xloc]
    fig.tight_layout(rect=[x0, y0, x1, y1], h_pad=0.5, w_pad=0.5)


def save(fig, args):
    args.outdir.mkdir(parents=True, exist_ok=True)
    filename = args.outdir / 'curves.png'
    fig.savefig(filename, dpi=args.dpi)
    print('Saved to', filename)
    filename = args.outdir / 'curves.pdf'
    fig.savefig(filename)
    try:
        subprocess.call(['pdfcrop', str(filename), str(filename)])
    except FileNotFoundError:
        print('Install texlive-extra-utils to crop PDF outputs.')


def bin_scores(xs, ys, borders, reducer=np.nanmean, fill='nan'):
    order = np.argsort(xs)
    xs, ys = xs[order], ys[order]
    binned = []
    with warnings.catch_warnings():  # Empty buckets become NaN.
        warnings.simplefilter('ignore', category=RuntimeWarning)
        for start, stop in zip(borders[:-1], borders[1:]):
            left = (xs <= start).sum()
            right = (xs <= stop).sum()
            if left < right:
                value = reducer(ys[left:right])
            elif binned:
                value = {'nan': np.nan, 'last': binned[-1]}[fill]
            else:
                value = np.nan
            binned.append(value)
    return borders[1:], np.array(binned)


def stack_scores(multiple_xs, multiple_ys, fill='last'):
    longest_xs = sorted(multiple_xs, key=lambda x: len(x))[-1]
    multiple_padded_ys = []
    for xs, ys in zip(multiple_xs, multiple_ys):
        assert (longest_xs[:len(xs)] == xs).all(), (list(xs), list(longest_xs))
        value = {'nan': np.nan, 'last': ys[-1]}[fill]
        padding = [value] * (len(longest_xs) - len(xs))
        padded_ys = np.concatenate([ys, padding])
        multiple_padded_ys.append(padded_ys)
    stacked_ys = np.stack(multiple_padded_ys, -1)
    return longest_xs, stacked_ys


def load_jsonl(filename):
    try:
        with filename.open() as f:
            lines = list(f.readlines())
        records = []
        for index, line in enumerate(lines):
            try:
                records.append(json.loads(line))
            except Exception:
                if index == len(lines) - 1:
                    continue  # Silently skip last line if it is incomplete.
                raise ValueError(
                    f'Skipping invalid JSON line ({index + 1}/{len(lines) + 1}) in'
                    f'{filename}: {line}')
        return pd.DataFrame(records)
    except ValueError as e:
        print('Invalid', filename, e)
        return None


def save_runs(runs, filename):
    filename.parent.mkdir(parents=True, exist_ok=True)
    records = []
    for run in runs:
        if run.xs is None:
            continue
        records.append(dict(
            task=run.task, method=run.method, seed=run.seed,
            xs=run.xs.tolist(), ys=run.ys.tolist()))
    runs = json.dumps(records)
    filename.write_text(runs)
    print('Saved', filename)


def main(args):
    find_keys(args)
    runs = load_runs(args)
    save_runs(runs, args.outdir / 'runs.json')
    baselines = load_baselines(args.baselines, args.prefix)
    stats(runs, baselines)
    methods = order_methods(runs, baselines, args)
    if not runs:
        print('Noting to plot.')
        return
    # Adjust options based on loaded runs.
    tasks = set(r.task for r in runs)
    if 'auto' in args.add:
        index = args.add.index('auto')
        del args.add[index]
        atari = any(run.task.startswith('atari_') for run in runs)
        if len(tasks) < 2:
            pass
        elif atari:
            args.add[index:index] = [
                'gamer_median', 'gamer_mean', 'record_mean', 'clip_record_mean',
            ]
        else:
            args.add[index:index] = ['mean', 'median']
    args.cols = min(args.cols, len(tasks) + len(args.add))
    args.legendcols = min(args.legendcols, args.cols)
    print('Plotting...')
    fig = figure(runs + baselines, methods, args)
    save(fig, args)


def parse_args():
    boolean = lambda x: bool(['False', 'True'].index(x))
    parser = argparse.ArgumentParser()
    parser.add_argument('--indir', nargs='+', type=pathlib.Path, required=True)
    parser.add_argument('--indir-prefix', type=pathlib.Path)
    parser.add_argument('--outdir', type=pathlib.Path, required=True)
    parser.add_argument('--subdir', type=boolean, default=True)
    parser.add_argument('--xaxis', type=str, default='step')
    parser.add_argument('--yaxis', type=str, default='eval_return')
    parser.add_argument('--tasks', nargs='+', default=[r'.*'])
    parser.add_argument('--methods', nargs='+', default=[r'.*'])
    parser.add_argument('--baselines', nargs='+', default=DEFAULT_BASELINES)
    parser.add_argument('--prefix', type=boolean, default=False)
    parser.add_argument('--bins', type=float, default=-1)
    parser.add_argument('--agg', type=str, default='std1')
    parser.add_argument('--size', nargs=2, type=float, default=[2.5, 2.3])
    parser.add_argument('--dpi', type=int, default=80)
    parser.add_argument('--cols', type=int, default=6)
    parser.add_argument('--xlim', nargs=2, type=float, default=None)
    parser.add_argument('--ylim', nargs=2, type=float, default=None)
    parser.add_argument('--ylimticks', type=boolean, default=True)
    parser.add_argument('--xlabel', type=str, default=None)
    parser.add_argument('--ylabel', type=str, default=None)
    parser.add_argument('--xticks', type=int, default=6)
    parser.add_argument('--yticks', type=int, default=5)
    parser.add_argument('--xmult', type=float, default=1)
    parser.add_argument('--labels', nargs='+', default=None)
    parser.add_argument('--palette', nargs='+', default=['contrast'])
    parser.add_argument('--legendcols', type=int, default=4)
    parser.add_argument('--colors', nargs='+', default={})
    parser.add_argument('--maxval', type=float, default=0)
    parser.add_argument('--add', nargs='+', type=str, default=['auto', 'seeds'])
    args = parser.parse_args()
    if args.subdir:
        args.outdir /= args.indir[0].stem
    if args.indir_prefix:
        args.indir = [args.indir_prefix / indir for indir in args.indir]
    args.indir = [d.expanduser() for d in args.indir]
    args.outdir = args.outdir.expanduser()
    if args.labels:
        assert len(args.labels) % 2 == 0
        args.labels = {k: v for k, v in zip(args.labels[:-1], args.labels[1:])}
    if args.colors:
        assert len(args.colors) % 2 == 0
        args.colors = {k: v for k, v in zip(args.colors[:-1], args.colors[1:])}
    args.tasks = [re.compile(p) for p in args.tasks]
    args.methods = [re.compile(p) for p in args.methods]
    args.baselines = [re.compile(p) for p in args.baselines]
    if 'return' not in args.yaxis:
        args.baselines = []
    if args.prefix is None:
        args.prefix = len(args.indir) > 1
    if len(args.palette) == 1 and args.palette[0] in PALETTES:
        args.palette = 10 * PALETTES[args.palette[0]]
    if len(args.add) == 1 and args.add[0] == 'none':
        args.add = []
    return args


if __name__ == '__main__':
    main(parse_args())