File size: 22,657 Bytes
6e5cc8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
import argparse
import collections
import functools
import itertools
import json
import multiprocessing as mp
import os
import pathlib
import re
import subprocess
import warnings
os.environ['NO_AT_BRIDGE'] = '1' # Hide X org false warning.
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
import pandas as pd
np.set_string_function(lambda x: f'<np.array shape={x.shape} dtype={x.dtype}>')
Run = collections.namedtuple('Run', 'task method seed xs ys')
PALETTES = dict(
discrete=(
'#377eb8', '#4daf4a', '#984ea3', '#e41a1c', '#ff7f00', '#a65628',
'#f781bf', '#888888', '#a6cee3', '#b2df8a', '#cab2d6', '#fb9a99',
),
contrast=(
'#0022ff', '#33aa00', '#ff0011', '#ddaa00', '#cc44dd', '#0088aa',
'#001177', '#117700', '#990022', '#885500', '#553366', '#006666',
),
gradient=(
'#fde725', '#a0da39', '#4ac16d', '#1fa187', '#277f8e', '#365c8d',
'#46327e', '#440154',
),
baselines=(
'#222222', '#666666', '#aaaaaa', '#cccccc',
),
)
LEGEND = dict(
fontsize='medium', numpoints=1, labelspacing=0, columnspacing=1.2,
handlelength=1.5, handletextpad=0.5, loc='lower center')
DEFAULT_BASELINES = ['d4pg', 'rainbow_sticky', 'human_gamer', 'impala']
def find_keys(args):
filenames = []
for indir in args.indir:
task = next(indir.iterdir()) # First only.
for method in task.iterdir():
seed = next(indir.iterdir()) # First only.
filenames += list(seed.glob('**/*.jsonl'))
keys = set()
for filename in filenames:
keys |= set(load_jsonl(filename).columns)
print(f'Keys ({len(keys)}):', ', '.join(keys), flush=True)
def load_runs(args):
total, toload = [], []
for indir in args.indir:
filenames = list(indir.glob('**/*.jsonl'))
total += filenames
for filename in filenames:
task, method, seed = filename.relative_to(indir).parts[:-1]
if not any(p.search(task) for p in args.tasks):
continue
if not any(p.search(method) for p in args.methods):
continue
toload.append((filename, indir))
print(f'Loading {len(toload)} of {len(total)} runs...')
jobs = [functools.partial(load_run, f, i, args) for f, i in toload]
# Disable async data loading:
# runs = [j() for j in jobs]
with mp.Pool(10) as pool:
promises = [pool.apply_async(j) for j in jobs]
runs = [p.get() for p in promises]
runs = [r for r in runs if r is not None]
return runs
def load_run(filename, indir, args):
task, method, seed = filename.relative_to(indir).parts[:-1]
prefix = f'indir{args.indir.index(indir) + 1}_'
if task == 'atari_jamesbond':
task = 'atari_james_bond'
seed = prefix + seed
if args.prefix:
method = prefix + method
df = load_jsonl(filename)
if df is None:
print('Skipping empty run')
return
try:
df = df[[args.xaxis, args.yaxis]].dropna()
if args.maxval:
df = df.replace([+np.inf], +args.maxval)
df = df.replace([-np.inf], -args.maxval)
df[args.yaxis] = df[args.yaxis].clip(-args.maxval, +args.maxval)
except KeyError:
return
xs = df[args.xaxis].to_numpy()
if args.xmult != 1:
xs = xs.astype(np.float32) * args.xmult
ys = df[args.yaxis].to_numpy()
bins = {
'atari': 1e6,
'dmc': 1e4,
'crafter': 1e4,
}.get(task.split('_')[0], 1e5) if args.bins == -1 else args.bins
if bins:
borders = np.arange(0, xs.max() + 1e-8, bins)
xs, ys = bin_scores(xs, ys, borders)
if not len(xs):
print('Skipping empty run', task, method, seed)
return
return Run(task, method, seed, xs, ys)
def load_baselines(patterns, prefix=False):
runs = []
directory = pathlib.Path(__file__).parent.parent / 'scores'
for filename in directory.glob('**/*_baselines.json'):
for task, methods in json.loads(filename.read_text()).items():
for method, score in methods.items():
if prefix:
method = f'baseline_{method}'
if not any(p.search(method) for p in patterns):
continue
runs.append(Run(task, method, None, None, score))
return runs
def stats(runs, baselines):
tasks = sorted(set(r.task for r in runs))
methods = sorted(set(r.method for r in runs))
seeds = sorted(set(r.seed for r in runs))
baseline = sorted(set(r.method for r in baselines))
print('Loaded', len(runs), 'runs.')
print(f'Tasks ({len(tasks)}):', ', '.join(tasks))
print(f'Methods ({len(methods)}):', ', '.join(methods))
print(f'Seeds ({len(seeds)}):', ', '.join(seeds))
print(f'Baselines ({len(baseline)}):', ', '.join(baseline))
def order_methods(runs, baselines, args):
methods = []
for pattern in args.methods:
for method in sorted(set(r.method for r in runs)):
if pattern.search(method):
if method not in methods:
methods.append(method)
if method not in args.colors:
index = len(args.colors) % len(args.palette)
args.colors[method] = args.palette[index]
non_baseline_colors = len(args.colors)
for pattern in args.baselines:
for method in sorted(set(r.method for r in baselines)):
if pattern.search(method):
if method not in methods:
methods.append(method)
if method not in args.colors:
index = len(args.colors) - non_baseline_colors
index = index % len(PALETTES['baselines'])
args.colors[method] = PALETTES['baselines'][index]
return methods
def figure(runs, methods, args):
tasks = sorted(set(r.task for r in runs if r.xs is not None))
rows = int(np.ceil((len(tasks) + len(args.add)) / args.cols))
figsize = args.size[0] * args.cols, args.size[1] * rows
fig, axes = plt.subplots(rows, args.cols, figsize=figsize, squeeze=False)
for task, ax in zip(tasks, axes.flatten()):
relevant = [r for r in runs if r.task == task]
plot(task, ax, relevant, methods, args)
for name, ax in zip(args.add, axes.flatten()[len(tasks):]):
ax.set_facecolor((0.9, 0.9, 0.9))
if name == 'median':
plot_combined(
'combined_median', ax, runs, methods, args,
agg=lambda x: np.nanmedian(x, -1))
elif name == 'mean':
plot_combined(
'combined_mean', ax, runs, methods, args,
agg=lambda x: np.nanmean(x, -1))
elif name == 'gamer_median':
plot_combined(
'combined_gamer_median', ax, runs, methods, args,
lo='random', hi='human_gamer',
agg=lambda x: np.nanmedian(x, -1))
elif name == 'gamer_mean':
plot_combined(
'combined_gamer_mean', ax, runs, methods, args,
lo='random', hi='human_gamer',
agg=lambda x: np.nanmean(x, -1))
elif name == 'record_mean':
plot_combined(
'combined_record_mean', ax, runs, methods, args,
lo='random', hi='record',
agg=lambda x: np.nanmean(x, -1))
elif name == 'clip_record_mean':
plot_combined(
'combined_clipped_record_mean', ax, runs, methods, args,
lo='random', hi='record', clip=True,
agg=lambda x: np.nanmean(x, -1))
elif name == 'seeds':
plot_combined(
'combined_seeds', ax, runs, methods, args,
agg=lambda x: np.isfinite(x).sum(-1))
elif name == 'human_above':
plot_combined(
'combined_above_human_gamer', ax, runs, methods, args,
agg=lambda y: (y >= 1.0).astype(float).sum(-1))
elif name == 'human_below':
plot_combined(
'combined_below_human_gamer', ax, runs, methods, args,
agg=lambda y: (y <= 1.0).astype(float).sum(-1))
else:
raise NotImplementedError(name)
if args.xlim:
for ax in axes[:-1].flatten():
ax.xaxis.get_offset_text().set_visible(False)
if args.xlabel:
for ax in axes[-1]:
ax.set_xlabel(args.xlabel)
if args.ylabel:
for ax in axes[:, 0]:
ax.set_ylabel(args.ylabel)
for ax in axes.flatten()[len(tasks) + len(args.add):]:
ax.axis('off')
legend(fig, args.labels, ncol=args.legendcols, **LEGEND)
return fig
def plot(task, ax, runs, methods, args):
assert runs
try:
title = task.split('_', 1)[1].replace('_', ' ').title()
except IndexError:
title = task.title()
ax.set_title(title)
xlim = [+np.inf, -np.inf]
for index, method in enumerate(methods):
relevant = [r for r in runs if r.method == method]
if not relevant:
continue
if any(r.xs is None for r in relevant):
baseline(index, method, ax, relevant, args)
else:
if args.agg == 'none':
xs, ys = curve_lines(index, task, method, ax, relevant, args)
else:
xs, ys = curve_area(index, task, method, ax, relevant, args)
if len(xs) == len(ys) == 0:
print(f'Skipping empty: {task} {method}')
continue
xlim = [min(xlim[0], np.nanmin(xs)), max(xlim[1], np.nanmax(xs))]
ax.ticklabel_format(axis='x', style='sci', scilimits=(0, 0))
steps = [1, 2, 2.5, 5, 10]
ax.xaxis.set_major_locator(ticker.MaxNLocator(args.xticks, steps=steps))
ax.yaxis.set_major_locator(ticker.MaxNLocator(args.yticks, steps=steps))
if np.isfinite(xlim).all():
ax.set_xlim(args.xlim or xlim)
if args.xlim:
ticks = sorted({*ax.get_xticks(), *args.xlim})
ticks = [x for x in ticks if args.xlim[0] <= x <= args.xlim[1]]
ax.set_xticks(ticks)
if args.ylim:
ax.set_ylim(args.ylim)
if args.ylimticks:
ticks = sorted({*ax.get_yticks(), *args.ylim})
ticks = [x for x in ticks if args.ylim[0] <= x <= args.ylim[1]]
ax.set_yticks(ticks)
def plot_combined(
name, ax, runs, methods, args, agg, lo=None, hi=None, clip=False):
tasks = sorted(set(run.task for run in runs if run.xs is not None))
seeds = list(set(run.seed for run in runs))
runs = [r for r in runs if r.task in tasks] # Discard unused baselines.
# Bin all runs onto the same X steps.
borders = sorted(
[r.xs for r in runs if r.xs is not None],
key=lambda x: np.nanmax(x))[-1]
for index, run in enumerate(runs):
if run.xs is None:
continue
xs, ys = bin_scores(run.xs, run.ys, borders, fill='last')
runs[index] = run._replace(xs=xs, ys=ys)
# Per-task normalization by low and high baseline.
if lo or hi:
mins = collections.defaultdict(list)
maxs = collections.defaultdict(list)
[mins[r.task].append(r.ys) for r in load_baselines([re.compile(lo)])]
[maxs[r.task].append(r.ys) for r in load_baselines([re.compile(hi)])]
mins = {task: min(ys) for task, ys in mins.items() if task in tasks}
maxs = {task: max(ys) for task, ys in maxs.items() if task in tasks}
missing_baselines = []
for task in tasks:
if task not in mins or task not in maxs:
missing_baselines.append(task)
if set(missing_baselines) == set(tasks):
print(f'No baselines found to normalize any tasks in {name} plot.')
else:
for task in missing_baselines:
print(f'No baselines found to normalize {task} in {name} plot.')
for index, run in enumerate(runs):
if run.task not in mins or run.task not in maxs:
continue
ys = (run.ys - mins[run.task]) / (maxs[run.task] - mins[run.task])
if clip:
ys = np.minimum(ys, 1.0)
runs[index] = run._replace(ys=ys)
# Aggregate across tasks but not methods or seeds.
combined = []
for method, seed in itertools.product(methods, seeds):
relevant = [r for r in runs if r.method == method and r.seed == seed]
if not relevant:
continue
if relevant[0].xs is None:
xs, ys = None, np.array([r.ys for r in relevant])
else:
xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in relevant]))
with warnings.catch_warnings(): # Ignore empty slice warnings.
warnings.simplefilter('ignore', category=RuntimeWarning)
combined.append(Run('combined', method, seed, xs, agg(ys)))
plot(name, ax, combined, methods, args)
def curve_lines(index, task, method, ax, runs, args):
zorder = 10000 - 10 * index - 1
for run in runs:
color = args.colors[method]
ax.plot(run.xs, run.ys, label=method, color=color, zorder=zorder)
xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in runs]))
return xs, ys
def curve_area(index, task, method, ax, runs, args):
xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in runs]))
with warnings.catch_warnings(): # NaN buckets remain NaN.
warnings.simplefilter('ignore', category=RuntimeWarning)
if args.agg == 'std1':
mean, std = np.nanmean(ys, -1), np.nanstd(ys, -1)
lo, mi, hi = mean - std, mean, mean + std
elif args.agg == 'per0':
lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (0, 50, 100)]
elif args.agg == 'per5':
lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (5, 50, 95)]
elif args.agg == 'per25':
lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (25, 50, 75)]
else:
raise NotImplementedError(args.agg)
color = args.colors[method]
kw = dict(color=color, zorder=1000 - 10 * index, alpha=0.1, linewidths=0)
mask = ~np.isnan(mi)
xs, lo, mi, hi = xs[mask], lo[mask], mi[mask], hi[mask]
ax.fill_between(xs, lo, hi, **kw)
ax.plot(xs, mi, label=method, color=color, zorder=10000 - 10 * index - 1)
return xs, mi
def baseline(index, method, ax, runs, args):
assert all(run.xs is None for run in runs)
ys = np.array([run.ys for run in runs])
mean, std = ys.mean(), ys.std()
color = args.colors[method]
kw = dict(color=color, zorder=500 - 20 * index - 1, alpha=0.1, linewidths=0)
ax.fill_between([-np.inf, np.inf], [mean - std] * 2, [mean + std] * 2, **kw)
kw = dict(ls='--', color=color, zorder=5000 - 10 * index - 1)
ax.axhline(mean, label=method, **kw)
def legend(fig, mapping=None, **kwargs):
entries = {}
for ax in fig.axes:
for handle, label in zip(*ax.get_legend_handles_labels()):
if mapping and label in mapping:
label = mapping[label]
entries[label] = handle
leg = fig.legend(entries.values(), entries.keys(), **kwargs)
leg.get_frame().set_edgecolor('white')
extent = leg.get_window_extent(fig.canvas.get_renderer())
extent = extent.transformed(fig.transFigure.inverted())
yloc, xloc = kwargs['loc'].split()
y0 = dict(lower=extent.y1, center=0, upper=0)[yloc]
y1 = dict(lower=1, center=1, upper=extent.y0)[yloc]
x0 = dict(left=extent.x1, center=0, right=0)[xloc]
x1 = dict(left=1, center=1, right=extent.x0)[xloc]
fig.tight_layout(rect=[x0, y0, x1, y1], h_pad=0.5, w_pad=0.5)
def save(fig, args):
args.outdir.mkdir(parents=True, exist_ok=True)
filename = args.outdir / 'curves.png'
fig.savefig(filename, dpi=args.dpi)
print('Saved to', filename)
filename = args.outdir / 'curves.pdf'
fig.savefig(filename)
try:
subprocess.call(['pdfcrop', str(filename), str(filename)])
except FileNotFoundError:
print('Install texlive-extra-utils to crop PDF outputs.')
def bin_scores(xs, ys, borders, reducer=np.nanmean, fill='nan'):
order = np.argsort(xs)
xs, ys = xs[order], ys[order]
binned = []
with warnings.catch_warnings(): # Empty buckets become NaN.
warnings.simplefilter('ignore', category=RuntimeWarning)
for start, stop in zip(borders[:-1], borders[1:]):
left = (xs <= start).sum()
right = (xs <= stop).sum()
if left < right:
value = reducer(ys[left:right])
elif binned:
value = {'nan': np.nan, 'last': binned[-1]}[fill]
else:
value = np.nan
binned.append(value)
return borders[1:], np.array(binned)
def stack_scores(multiple_xs, multiple_ys, fill='last'):
longest_xs = sorted(multiple_xs, key=lambda x: len(x))[-1]
multiple_padded_ys = []
for xs, ys in zip(multiple_xs, multiple_ys):
assert (longest_xs[:len(xs)] == xs).all(), (list(xs), list(longest_xs))
value = {'nan': np.nan, 'last': ys[-1]}[fill]
padding = [value] * (len(longest_xs) - len(xs))
padded_ys = np.concatenate([ys, padding])
multiple_padded_ys.append(padded_ys)
stacked_ys = np.stack(multiple_padded_ys, -1)
return longest_xs, stacked_ys
def load_jsonl(filename):
try:
with filename.open() as f:
lines = list(f.readlines())
records = []
for index, line in enumerate(lines):
try:
records.append(json.loads(line))
except Exception:
if index == len(lines) - 1:
continue # Silently skip last line if it is incomplete.
raise ValueError(
f'Skipping invalid JSON line ({index + 1}/{len(lines) + 1}) in'
f'{filename}: {line}')
return pd.DataFrame(records)
except ValueError as e:
print('Invalid', filename, e)
return None
def save_runs(runs, filename):
filename.parent.mkdir(parents=True, exist_ok=True)
records = []
for run in runs:
if run.xs is None:
continue
records.append(dict(
task=run.task, method=run.method, seed=run.seed,
xs=run.xs.tolist(), ys=run.ys.tolist()))
runs = json.dumps(records)
filename.write_text(runs)
print('Saved', filename)
def main(args):
find_keys(args)
runs = load_runs(args)
save_runs(runs, args.outdir / 'runs.json')
baselines = load_baselines(args.baselines, args.prefix)
stats(runs, baselines)
methods = order_methods(runs, baselines, args)
if not runs:
print('Noting to plot.')
return
# Adjust options based on loaded runs.
tasks = set(r.task for r in runs)
if 'auto' in args.add:
index = args.add.index('auto')
del args.add[index]
atari = any(run.task.startswith('atari_') for run in runs)
if len(tasks) < 2:
pass
elif atari:
args.add[index:index] = [
'gamer_median', 'gamer_mean', 'record_mean', 'clip_record_mean',
]
else:
args.add[index:index] = ['mean', 'median']
args.cols = min(args.cols, len(tasks) + len(args.add))
args.legendcols = min(args.legendcols, args.cols)
print('Plotting...')
fig = figure(runs + baselines, methods, args)
save(fig, args)
def parse_args():
boolean = lambda x: bool(['False', 'True'].index(x))
parser = argparse.ArgumentParser()
parser.add_argument('--indir', nargs='+', type=pathlib.Path, required=True)
parser.add_argument('--indir-prefix', type=pathlib.Path)
parser.add_argument('--outdir', type=pathlib.Path, required=True)
parser.add_argument('--subdir', type=boolean, default=True)
parser.add_argument('--xaxis', type=str, default='step')
parser.add_argument('--yaxis', type=str, default='eval_return')
parser.add_argument('--tasks', nargs='+', default=[r'.*'])
parser.add_argument('--methods', nargs='+', default=[r'.*'])
parser.add_argument('--baselines', nargs='+', default=DEFAULT_BASELINES)
parser.add_argument('--prefix', type=boolean, default=False)
parser.add_argument('--bins', type=float, default=-1)
parser.add_argument('--agg', type=str, default='std1')
parser.add_argument('--size', nargs=2, type=float, default=[2.5, 2.3])
parser.add_argument('--dpi', type=int, default=80)
parser.add_argument('--cols', type=int, default=6)
parser.add_argument('--xlim', nargs=2, type=float, default=None)
parser.add_argument('--ylim', nargs=2, type=float, default=None)
parser.add_argument('--ylimticks', type=boolean, default=True)
parser.add_argument('--xlabel', type=str, default=None)
parser.add_argument('--ylabel', type=str, default=None)
parser.add_argument('--xticks', type=int, default=6)
parser.add_argument('--yticks', type=int, default=5)
parser.add_argument('--xmult', type=float, default=1)
parser.add_argument('--labels', nargs='+', default=None)
parser.add_argument('--palette', nargs='+', default=['contrast'])
parser.add_argument('--legendcols', type=int, default=4)
parser.add_argument('--colors', nargs='+', default={})
parser.add_argument('--maxval', type=float, default=0)
parser.add_argument('--add', nargs='+', type=str, default=['auto', 'seeds'])
args = parser.parse_args()
if args.subdir:
args.outdir /= args.indir[0].stem
if args.indir_prefix:
args.indir = [args.indir_prefix / indir for indir in args.indir]
args.indir = [d.expanduser() for d in args.indir]
args.outdir = args.outdir.expanduser()
if args.labels:
assert len(args.labels) % 2 == 0
args.labels = {k: v for k, v in zip(args.labels[:-1], args.labels[1:])}
if args.colors:
assert len(args.colors) % 2 == 0
args.colors = {k: v for k, v in zip(args.colors[:-1], args.colors[1:])}
args.tasks = [re.compile(p) for p in args.tasks]
args.methods = [re.compile(p) for p in args.methods]
args.baselines = [re.compile(p) for p in args.baselines]
if 'return' not in args.yaxis:
args.baselines = []
if args.prefix is None:
args.prefix = len(args.indir) > 1
if len(args.palette) == 1 and args.palette[0] in PALETTES:
args.palette = 10 * PALETTES[args.palette[0]]
if len(args.add) == 1 and args.add[0] == 'none':
args.add = []
return args
if __name__ == '__main__':
main(parse_args())
|