File size: 8,017 Bytes
6e5cc8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import collections
import functools
import logging
import os
import pathlib
import re
import sys
import warnings
try:
import rich.traceback
rich.traceback.install()
except ImportError:
pass
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
logging.getLogger().setLevel('ERROR')
warnings.filterwarnings('ignore', '.*box bound precision lowered.*')
sys.path.append(str(pathlib.Path(__file__).parent))
sys.path.append(str(pathlib.Path(__file__).parent.parent))
import numpy as np
import ruamel.yaml as yaml
from dreamerv2 import agent
from dreamerv2 import common
def main():
configs = yaml.safe_load((pathlib.Path(sys.argv[0]).parent / 'configs.yaml').read_text())
parsed, remaining = common.Flags(configs=['defaults']).parse(known_only=True)
config = common.Config(configs['defaults'])
for name in parsed.configs:
config = config.update(configs[name])
config = common.Flags(config).parse(remaining)
logdir = pathlib.Path(config.logdir).expanduser()
logdir.mkdir(parents=True, exist_ok=True)
config.save(logdir / 'config.yaml')
print(config, '\n')
print('Logdir', logdir)
import tensorflow as tf
tf.config.experimental_run_functions_eagerly(not config.jit)
message = 'No GPU found. To actually train on CPU remove this assert.'
assert tf.config.experimental.list_physical_devices('GPU'), message
for gpu in tf.config.experimental.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, True)
assert config.precision in (16, 32), config.precision
if config.precision == 16:
from tensorflow.keras.mixed_precision import experimental as prec
prec.set_policy(prec.Policy('mixed_float16'))
train_replay = common.Replay(logdir / 'train_episodes', **config.replay)
eval_replay = common.Replay(logdir / 'eval_episodes', **dict(
capacity=config.replay.capacity // 10,
minlen=config.dataset.length,
maxlen=config.dataset.length))
step = common.Counter(train_replay.stats['total_steps'])
outputs = [
common.TerminalOutput(),
common.JSONLOutput(logdir),
common.TensorBoardOutput(logdir),
]
logger = common.Logger(step, outputs, multiplier=config.action_repeat)
metrics = collections.defaultdict(list)
should_train = common.Every(config.train_every)
should_log = common.Every(config.log_every)
should_video_train = common.Every(config.eval_every)
should_video_eval = common.Every(config.eval_every)
should_expl = common.Until(config.expl_until)
def make_env(mode):
suite, task = config.task.split('_', 1)
if suite == 'dmc':
env = common.DMC(
task, config.action_repeat, config.render_size, config.dmc_camera)
env = common.NormalizeAction(env)
elif suite == 'dmcmt':
env = common.DMCMultitask(
task, config.action_repeat, config.render_size, config.dmc_camera)
env = common.NormalizeAction(env)
elif suite == 'atari':
env = common.Atari(
task, config.action_repeat, config.render_size,
config.atari_grayscale)
env = common.OneHotAction(env)
elif suite == 'crafter':
assert config.action_repeat == 1
outdir = logdir / 'crafter' if mode == 'train' else None
reward = bool(['noreward', 'reward'].index(task)) or mode == 'eval'
env = common.Crafter(outdir, reward)
env = common.OneHotAction(env)
else:
raise NotImplementedError(suite)
env = common.TimeLimit(env, config.time_limit)
return env
def per_episode(ep, mode):
length = len(ep['reward']) - 1
score = float(ep['reward'].astype(np.float64).sum())
print(f'{mode.title()} episode has {length} steps and return {score:.1f}.')
logger.scalar(f'{mode}_return', score)
logger.scalar(f'{mode}_length', length)
for key, value in ep.items():
if re.match(config.log_keys_sum, key):
logger.scalar(f'sum_{mode}_{key}', ep[key].sum())
if re.match(config.log_keys_mean, key):
logger.scalar(f'mean_{mode}_{key}', ep[key].mean())
if re.match(config.log_keys_max, key):
logger.scalar(f'max_{mode}_{key}', ep[key].max(0).mean())
should = {'train': should_video_train, 'eval': should_video_eval}[mode]
if should(step):
for key in config.log_keys_video:
logger.video(f'{mode}_policy_{key}', ep[key])
replay = dict(train=train_replay, eval=eval_replay)[mode]
logger.add(replay.stats, prefix=mode)
logger.write()
print('Create envs.')
num_eval_envs = min(config.envs, config.eval_eps)
if config.envs_parallel == 'none':
train_envs = [make_env('train') for _ in range(config.envs)]
eval_envs = [make_env('eval') for _ in range(num_eval_envs)]
else:
make_async_env = lambda mode: common.Async(
functools.partial(make_env, mode), config.envs_parallel)
train_envs = [make_async_env('train') for _ in range(config.envs)]
eval_envs = [make_async_env('eval') for _ in range(num_eval_envs)]
act_space = train_envs[0].act_space
obs_space = train_envs[0].obs_space
train_driver = common.Driver(train_envs)
train_driver.on_episode(lambda ep: per_episode(ep, mode='train'))
train_driver.on_step(lambda tran, worker: step.increment())
train_driver.on_step(train_replay.add_step)
train_driver.on_reset(train_replay.add_step)
eval_driver = common.Driver(eval_envs)
eval_driver.on_episode(lambda ep: per_episode(ep, mode='eval'))
eval_driver.on_episode(eval_replay.add_episode)
prefill = max(0, config.prefill - train_replay.stats['total_steps'])
if prefill:
print(f'Prefill dataset ({prefill} steps).')
random_agent = common.RandomAgent(act_space)
train_driver(random_agent, steps=prefill, episodes=1)
eval_driver(random_agent, episodes=1)
train_driver.reset()
eval_driver.reset()
print('Create agent.')
train_dataset = iter(train_replay.dataset(**config.dataset))
report_dataset = iter(train_replay.dataset(**config.dataset))
eval_dataset = iter(eval_replay.dataset(**config.dataset))
agnt = agent.Agent(config, obs_space, act_space, step)
train_agent = common.CarryOverState(agnt.train)
train_agent(next(train_dataset))
if (logdir / 'variables.pkl').exists():
agnt.load(logdir / 'variables.pkl')
else:
print('Pretrain agent.')
for _ in range(config.pretrain):
train_agent(next(train_dataset))
train_policy = lambda *args: agnt.policy(
*args, mode='explore' if should_expl(step) else 'train')
eval_policy = lambda *args: agnt.policy(*args, mode='eval')
def train_step(tran, worker):
if should_train(step):
for _ in range(config.train_steps):
mets = train_agent(next(train_dataset))
[metrics[key].append(value) for key, value in mets.items()]
if should_log(step):
for name, values in metrics.items():
logger.scalar(name, np.array(values, np.float64).mean())
metrics[name].clear()
logger.add(agnt.report(next(report_dataset)), prefix='train')
logger.write(fps=True)
train_driver.on_step(train_step)
while step < config.steps:
logger.write()
print('Start evaluation.')
logger.add(agnt.report(next(eval_dataset)), prefix='eval')
eval_driver(eval_policy, episodes=config.eval_eps)
print('Start training.')
train_driver(train_policy, steps=config.eval_every)
agnt.save(logdir / f'variables.pkl')
for env in train_envs + eval_envs:
try:
env.close()
except Exception:
pass
if __name__ == '__main__':
main()
|