conglu's picture
upload code
6e5cc8b
import argparse
from copy import deepcopy
import functools
import os
import pathlib
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
import random
import tensorflow as tf
from tensorflow.keras.mixed_precision import experimental as prec
tf.get_logger().setLevel('ERROR')
from tensorflow_probability import distributions as tfd
from baselines.lompo import buffer
from baselines.lompo import models
from baselines.lompo import tools
from baselines.lompo import wrappers
def define_config():
config = tools.AttrDict()
# General.
config.logdir = pathlib.Path('.logdir')
config.loaddir = pathlib.Path('.logdir')
config.datadir = pathlib.Path('.datadir/walker')
config.seed = 0
config.log_every = 1000
config.save_every = 5000
config.log_scalars = True
config.log_images = True
config.gpu_growth = True
# Environment.
config.task = 'dmc_walker_walk'
config.envs = 1
config.parallel = 'none'
config.action_repeat = 2
config.time_limit = 1000
config.im_size = 64
config.eval_noise = 0.0
config.clip_rewards = 'none'
config.precision = 32
# Model.
config.deter_size = 256
config.stoch_size = 64
config.num_models = 7
config.num_units = 256
config.proprio = False
config.penalty_type = 'log_prob'
config.dense_act = 'elu'
config.cnn_act = 'relu'
config.cnn_depth = 32
config.pcont = False
config.kl_scale = 1.0
config.pcont_scale = 10.0
config.weight_decay = 0.0
config.weight_decay_pattern = r'.*'
# Training.
config.load_model = False
config.load_agent = False
config.load_buffer = False
config.train_steps = 100000
config.model_train_steps = 25000
config.model_batch_size = 64
config.model_batch_length = 50
config.agent_batch_size = 256
config.cql_samples = 16
config.start_training = 50000
config.agent_train_steps = 150000
config.agent_iters_per_step = 200
config.buffer_size = 2e6
config.model_lr = 6e-4
config.q_lr = 3e-4
config.actor_lr = 3e-4
config.grad_clip = 100.0
config.tau = 5e-3
config.target_update_interval = 1
config.dataset_balance = False
# Behavior.
config.lmbd = 5.0
config.alpha = 0.0
config.sample = True
config.discount = 0.99
config.disclam = 0.95
config.horizon = 5
config.done_treshold = 0.5
config.action_dist = 'tanh_normal'
config.action_init_std = 5.0
config.expl = 'additive_gaussian'
config.expl_amount = 0.2
config.expl_decay = 0.0
config.expl_min = 0.0
return config
class Lompo(tools.Module):
def __init__(self, config, datadir, actspace, writer):
self._c = config
self._actspace = actspace
self._actdim = actspace.n if hasattr(actspace, 'n') else actspace.shape[0]
episodes, steps = tools.count_episodes(datadir)
self.latent_buffer = buffer.LatentReplayBuffer(steps,
steps,
self._c.deter_size + self._c.stoch_size,
self._actdim)
self.lmbd = config.lmbd
self.alpha = config.alpha
self._writer = writer
tf.summary.experimental.set_step(0)
self._metrics = dict()
self._agent_step = 0
self._model_step = 0
self._random = np.random.RandomState(config.seed)
self._float = prec.global_policy().compute_dtype
self._dataset = iter(load_dataset(datadir, self._c))
self._episode_iterator = episode_iterator(datadir, self._c)
self._build_model()
for _ in range(10):
self._model_train_step(next(self._dataset), prefix='eval')
def __call__(self, obs, reset, state=None, training=True):
if state is not None and reset.any():
mask = tf.cast(1 - reset, self._float)[:, None]
state = tf.nest.map_structure(lambda x: x * mask, state)
action, state = self.policy(obs, state, training)
return action, state
def load(self, filename):
try:
self.load_model(filename)
except:
pass
try:
self.load_agent(filename)
except:
pass
def save(self, filename):
self.save_model(filename)
self.save_agentl(filename)
def load_model(self, filename):
self._encode.load(filename / 'encode.pkl')
self._dynamics.load(filename / 'dynamic.pkl')
self._decode.load(filename / 'decode.pkl')
self._reward.load(filename / 'reward.pkl')
if self._c.pcont:
self._pcont.load(filename / 'pcont.pkl')
if self._c.proprio:
self._proprio.load(filename / 'proprio.pkl')
def save_model(self, filename):
filename.mkdir(parents=True, exist_ok=True)
self._encode.save(filename / 'encode.pkl')
self._dynamics.save(filename / 'dynamic.pkl')
self._decode.save(filename / 'decode.pkl')
self._reward.save(filename / 'reward.pkl')
if self._c.pcont:
self._pcont.save(filename / 'pcont.pkl')
if self._c.proprio:
self._proprio.save(filename / 'proprio.pkl')
def load_agent(self, filename):
self._qf1.load(filename / 'qf1.pkl')
self._qf2.load(filename / 'qf2.pkl')
self._target_qf1.load(filename / 'target_qf1.pkl')
self._target_qf2.load(filename / 'target_qf2.pkl')
self._actor.load(filename / 'actor.pkl')
def save_agent(self, filename):
filename.mkdir(parents=True, exist_ok=True)
self._qf1.save(filename / 'qf1.pkl')
self._qf2.save(filename / 'qf2.pkl')
self._target_qf1.save(filename / 'target_qf1.pkl')
self._target_qf2.save(filename / 'target_qf2.pkl')
self._actor.save(filename / 'actor.pkl')
def policy(self, obs, state, training):
if state is None:
latent = self._dynamics.initial(len(obs['image']))
action = tf.zeros((len(obs['image']), self._actdim), self._float)
else:
latent, action = state
embed = self._encode(preprocess_raw(obs, self._c))
latent, _ = self._dynamics.obs_step(latent, action, embed)
feat = self._dynamics.get_feat(latent)
action = self._exploration(self._actor(feat), training)
state = (latent, action)
return action, state
def _build_model(self):
acts = dict(elu=tf.nn.elu, relu=tf.nn.relu,
swish=tf.nn.swish, leaky_relu=tf.nn.leaky_relu)
cnn_act = acts[self._c.cnn_act]
act = acts[self._c.dense_act]
# Create encoder based on environment observations
if self._c.proprio:
if self._c.im_size == 64:
self._encode = models.ConvEncoderProprio(self._c.cnn_depth, cnn_act)
else:
self._encode = models.ConvEncoderProprioLarge(self._c.cnn_depth, cnn_act)
else:
if self._c.im_size == 64:
self._encode = models.ConvEncoder(self._c.cnn_depth, cnn_act)
else:
self._encode = models.ConvEncoderLarge(self._c.cnn_depth, cnn_act)
# RSSM model with ensembles
self._dynamics = models.RSSME(self._c.stoch_size, self._c.deter_size,
self._c.deter_size, num_models=self._c.num_models)
# Create decoder based on image size
if self._c.im_size == 64:
self._decode = models.ConvDecoder(self._c.cnn_depth, cnn_act,
shape=(self._c.im_size, self._c.im_size, 3))
else:
self._decode = models.ConvDecoderLarge(self._c.cnn_depth, cnn_act,
shape=(self._c.im_size, self._c.im_size, 3))
if self._c.proprio:
self._proprio = models.DenseDecoder((self._propriodim,), 3, self._c.num_units, act=act)
if self._c.pcont:
self._pcont = models.DenseDecoder((), 3, self._c.num_units, 'binary', act=act)
self._reward = models.DenseDecoder((), 2, self._c.num_units, act=act)
model_modules = [self._encode, self._dynamics, self._decode, self._reward]
if self._c.proprio:
model_modules.append(self._proprio)
if self._c.pcont:
model_modules.append(self._pcont)
# Build actor-critic networks
self._qf1 = models.DenseNetwork(1, 3, self._c.num_units, act=act)
self._qf2 = models.DenseNetwork(1, 3, self._c.num_units, act=act)
self._target_qf1 = deepcopy(self._qf2)
self._target_qf2 = deepcopy(self._qf1)
self._qf_criterion = tf.keras.losses.Huber()
self._actor = models.ActorNetwork(self._actdim, 4, self._c.num_units, act=act)
# Initialize optimizers
Optimizer = functools.partial(tools.Adam,
wd=self._c.weight_decay,
clip=self._c.grad_clip,
wdpattern=self._c.weight_decay_pattern)
self._model_opt = Optimizer('model', model_modules, self._c.model_lr)
self._qf_opt = Optimizer('qf', [self._qf1, self._qf2], self._c.q_lr)
self._actor_opt = Optimizer('actor', [self._actor], self._c.actor_lr)
def _exploration(self, action, training):
if training:
amount = self._c.expl_amount
if self._c.expl_decay:
amount *= 0.5 ** (tf.cast(self._agent_step, tf.float32) / self._c.expl_decay)
if self._c.expl_min:
amount = tf.maximum(self._c.expl_min, amount)
self._metrics['expl_amount'] = amount
elif self._c.eval_noise:
amount = self._c.eval_noise
else:
return action
if self._c.expl == 'additive_gaussian':
return tf.clip_by_value(tfd.Normal(action, amount).sample(), -1, 1)
if self._c.expl == 'completely_random':
return tf.random.uniform(action.shape, -1, 1)
raise NotImplementedError(self._c.expl)
def fit_model(self, iters):
for iter in range(iters):
data = next(self._dataset)
self._model_train_step(data)
if iter % self._c.save_every == 0:
self.save_model(self._c.logdir / 'model_step_{}'.format(iter))
self.save_model(self._c.logdir / 'final_model')
def _model_train_step(self, data, prefix='train'):
with tf.GradientTape() as model_tape:
embed = self._encode(data)
post, prior = self._dynamics.observe(embed, data['action'])
feat = self._dynamics.get_feat(post)
image_pred = self._decode(feat)
reward_pred = self._reward(feat)
likes = tools.AttrDict()
likes.image = tf.reduce_mean(tf.boolean_mask(image_pred.log_prob(data['image']),
data['mask']))
likes.reward = tf.reduce_mean(tf.boolean_mask(reward_pred.log_prob(data['reward']),
data['mask']))
if self._c.pcont:
pcont_pred = self._pcont(feat)
pcont_target = data['terminal']
likes.pcont = tf.reduce_mean(tf.boolean_mask(pcont_pred.log_prob(pcont_target),
data['mask']))
likes.pcont *= self._c.pcont_scale
for key in prior.keys():
prior[key] = tf.boolean_mask(prior[key], data['mask'])
post[key] = tf.boolean_mask(post[key], data['mask'])
prior_dist = self._dynamics.get_dist(prior)
post_dist = self._dynamics.get_dist(post)
div = tf.reduce_mean(tfd.kl_divergence(post_dist, prior_dist))
model_loss = self._c.kl_scale * div - sum(likes.values())
if prefix == 'train':
model_norm = self._model_opt(model_tape, model_loss)
self._model_step += 1
if self._model_step % self._c.log_every == 0:
self._image_summaries(data, embed, image_pred, self._model_step, prefix)
model_summaries = dict()
model_summaries['model_train/KL Divergence'] = tf.reduce_mean(div)
model_summaries['model_train/image_recon'] = tf.reduce_mean(likes.image)
model_summaries['model_train/reward_recon'] = tf.reduce_mean(likes.reward)
model_summaries['model_train/model_loss'] = tf.reduce_mean(model_loss)
if prefix == 'train':
model_summaries['model_train/model_norm'] = tf.reduce_mean(model_norm)
if self._c.pcont:
model_summaries['model_train/terminal_recon'] = tf.reduce_mean(likes.pcont)
self._write_summaries(model_summaries, self._model_step)
def train_agent(self, iters):
for iter in range(iters):
data = preprocess_latent(self.latent_buffer.sample(self._c.agent_batch_size))
self._agent_train_step(data)
if self._agent_step % self._c.target_update_interval == 0:
self._update_target_critics()
if iter % self._c.save_every == 0:
self.save_agent(self._c.logdir)
self.save_agent(self._c.logdir / 'final_agent')
def _agent_train_step(self, data):
obs = data['obs']
actions = data['actions']
next_obs = data['next_obs']
rewards = data['rewards']
terminals = data['terminals']
with tf.GradientTape() as q_tape:
q1_pred = self._qf1(tf.concat([obs, actions], axis=-1))
q2_pred = self._qf2(tf.concat([obs, actions], axis=-1))
# new_next_actions = self._exploration(self._actor(next_obs), True)
new_actions = self._actor(obs)
new_next_actions = self._actor(next_obs)
target_q_values = tf.reduce_min([self._target_qf1(tf.concat([next_obs, new_next_actions], axis=-1)),
self._target_qf2(tf.concat([next_obs, new_next_actions], axis=-1))],
axis=0)
q_target = rewards + self._c.discount * (1.0 - terminals) * target_q_values
expanded_actions = tf.expand_dims(actions, 0)
tilled_actions = tf.tile(expanded_actions, [self._c.cql_samples, 1, 1])
tilled_actions = tf.random.uniform(tilled_actions.shape, minval=-1, maxval=1)
tilled_actions = tf.concat([tilled_actions, tf.expand_dims(new_actions, 0)], axis=0)
expanded_obs = tf.expand_dims(obs, 0)
tilled_obs = tf.tile(expanded_obs, [self._c.cql_samples + 1, 1, 1])
q1_values = self._qf1(tf.concat([tilled_obs, tilled_actions], axis=-1))
q2_values = self._qf2(tf.concat([tilled_obs, tilled_actions], axis=-1))
q1_penalty = tf.math.reduce_logsumexp(q1_values, axis=0)
q2_penalty = tf.math.reduce_logsumexp(q2_values, axis=0)
qf1_loss = self.alpha * (tf.reduce_mean(q1_penalty) - tf.reduce_mean(q1_pred[:self._c.agent_batch_size])) + \
tf.reduce_mean((q1_pred - tf.stop_gradient(q_target)) ** 2)
qf2_loss = self.alpha * (tf.reduce_mean(q2_penalty) - tf.reduce_mean(q2_pred[:self._c.agent_batch_size])) + \
tf.reduce_mean((q2_pred - tf.stop_gradient(q_target)) ** 2)
q_loss = qf1_loss + qf2_loss
with tf.GradientTape() as actor_tape:
new_obs_actions = self._actor(obs)
q_new_actions = tf.reduce_min([self._qf1(tf.concat([obs, new_obs_actions], axis=-1)),
self._qf2(tf.concat([obs, new_obs_actions], axis=-1))], axis=0)
actor_loss = -tf.reduce_mean(q_new_actions)
q_norm = self._qf_opt(q_tape, q_loss)
actor_norm = self._actor_opt(actor_tape, actor_loss)
self._agent_step += 1
if self._agent_step % self._c.log_every == 0:
agent_summaries = dict()
agent_summaries['agent/Q1_value'] = tf.reduce_mean(q1_pred)
agent_summaries['agent/Q2_value'] = tf.reduce_mean(q2_pred)
agent_summaries['agent/Q_target'] = tf.reduce_mean(q_target)
agent_summaries['agent/Q_loss'] = q_loss
agent_summaries['agent/actor_loss'] = actor_loss
agent_summaries['agent/Q_grad_norm'] = q_norm
agent_summaries['agent/actor_grad_norm'] = actor_norm
self._write_summaries(agent_summaries, self._agent_step)
def _update_target_critics(self):
tau = tf.constant(self._c.tau)
for source_weight, target_weight in zip(self._qf1.trainable_variables,
self._target_qf1.trainable_variables):
target_weight.assign(tau * source_weight + (1.0 - tau) * target_weight)
for source_weight, target_weight in zip(self._qf2.trainable_variables,
self._target_qf2.trainable_variables):
target_weight.assign(tau * source_weight + (1.0 - tau) * target_weight)
def _generate_latent_data(self, data):
embed = self._encode(data)
post, prior = self._dynamics.observe(embed, data['action'])
if self._c.pcont: # Last step could be terminal.
post = {k: v[:, :-1] for k, v in post.items()}
for key in post.keys():
post[key] = tf.boolean_mask(post[key], data['mask'])
start = post
policy = lambda state: tf.stop_gradient(
self._exploration(self._actor(self._dynamics.get_feat(state)), True))
obs = [[] for _ in tf.nest.flatten(start)]
next_obs = [[] for _ in tf.nest.flatten(start)]
actions = []
full_posts = [[[] for _ in tf.nest.flatten(start)] for _ in range(self._c.num_models)]
prev = start
for index in range(self._c.horizon):
[o.append(l) for o, l in zip(obs, tf.nest.flatten(prev))]
a = policy(prev)
actions.append(a)
for i in range(self._c.num_models):
p = self._dynamics.img_step(prev, a, k=i)
[o.append(l) for o, l in zip(full_posts[i], tf.nest.flatten(p))]
prev = self._dynamics.img_step(prev, a, k=np.random.choice(self._c.num_models, 1)[0])
[o.append(l) for o, l in zip(next_obs, tf.nest.flatten(prev))]
obs = self._dynamics.get_feat(tf.nest.pack_sequence_as(start, [tf.stack(x, 0) for x in obs]))
stoch = tf.nest.pack_sequence_as(start, [tf.stack(x, 0) for x in next_obs])['stoch']
next_obs = self._dynamics.get_feat(tf.nest.pack_sequence_as(start, [tf.stack(x, 0) for x in next_obs]))
actions = tf.stack(actions, 0)
rewards = self._reward(next_obs).mode()
if self._c.pcont:
dones = 1.0 * (self._pcont(next_obs).mean().numpy() > self._c.done_treshold)
else:
dones = tf.zeros_like(rewards)
dists = [self._dynamics.get_dist(
tf.nest.pack_sequence_as(start, [tf.stack(x, 0) for x in full_posts[i]]))
for i in range(self._c.num_models)]
# Compute penalty based on specification
if self._c.penalty_type == 'log_prob':
log_prob_vars = tf.math.reduce_std(
tf.stack([d.log_prob(stoch) for d in dists], 0),
axis=0)
modified_rewards = rewards - self.lmbd * log_prob_vars
elif self._c.penalty_type == 'max_var':
max_std = tf.reduce_max(
tf.stack([tf.norm(d.stddev(), 2, -1) for d in dists], 0),
axis=0)
modified_rewards = rewards - self.lmbd * max_std
elif self._c.penalty_type == 'mean':
mean_prediction = tf.reduce_mean(tf.stack([d.mean() for d in dists], 0), axis=0)
mean_disagreement = tf.reduce_mean(
tf.stack([tf.norm(d.mean() - mean_prediction, 2, -1) for d in dists], 0),
axis=0)
modified_rewards = rewards - self.lmbd * mean_disagreement
else:
modified_rewards = rewards
self.latent_buffer.add_samples(flatten(obs).numpy(),
flatten(actions).numpy(),
flatten(next_obs).numpy(),
flatten(modified_rewards).numpy(),
flatten(dones),
sample_type='latent')
obs = [[] for _ in tf.nest.flatten(start)]
next_obs = [[] for _ in tf.nest.flatten(start)]
actions = []
full_posts = [[[] for _ in tf.nest.flatten(start)] for _ in range(self._c.num_models)]
for key in prev.keys():
prev[key] = tf.boolean_mask(prev[key], flatten(1.0 - dones))
def _add_data(self, num_episodes=1):
self._process_data_to_latent(num_episodes=num_episodes)
self._generate_latent_data(next(self._dataset))
def _process_data_to_latent(self, num_episodes=None):
if num_episodes is None:
num_episodes, _ = tools.count_episodes(self._c.datadir)
for _ in range(num_episodes):
filename = next(self._episode_iterator)
try:
with filename.open('rb') as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys()}
except Exception as e:
print(f'Could not load episode: {e}')
continue
obs = preprocess_raw(episode, self._c)
if not self._c.pcont:
obs['terminal'] = tf.zeros_like(obs['reward'])
with tf.GradientTape(watch_accessed_variables=False) as _:
embed = self._encode(obs)
post, prior = self._dynamics.observe(tf.expand_dims(embed, 0),
tf.expand_dims(obs['action'], 0))
feat = flatten(self._dynamics.get_feat(post))
self.latent_buffer.add_samples(feat.numpy()[:-1],
obs['action'].numpy()[1:],
feat.numpy()[1:],
obs['reward'].numpy()[1:],
obs['terminal'].numpy()[1:],
sample_type='real')
def _image_summaries(self, data, embed, image_pred, step=None, prefix='train'):
truth = data['image'][:6] + 0.5
recon = image_pred.mode()[:6]
init, _ = self._dynamics.observe(embed[:6, :5], data['action'][:6, :5])
init = {k: v[:, -1] for k, v in init.items()}
prior = self._dynamics.imagine(data['action'][:6, 5:], init)
openl = self._decode(self._dynamics.get_feat(prior)).mode()
model = tf.concat([recon[:, :5] + 0.5, openl + 0.5], 1)
error_prior = (model - truth + 1) / 2
error_posterior = (recon + 0.5 - truth + 1) / 2
openl = tf.concat([truth, recon + 0.5, model, error_prior, error_posterior], 2)
with self._writer.as_default():
tools.video_summary('agent/' + prefix, openl.numpy(), step=step)
def _write_summaries(self, metrics, step=None):
step = int(step)
metrics = [(k, float(v)) for k, v in metrics.items()]
with self._writer.as_default():
tf.summary.experimental.set_step(step)
[tf.summary.scalar(k, m, step=step) for k, m in metrics]
print(f'[{step}]', ' / '.join(f'{k} {v:.1f}' for k, v in metrics))
self._writer.flush()
def preprocess_raw(obs, config):
dtype = prec.global_policy().compute_dtype
obs = obs.copy()
with tf.device('cpu:0'):
obs['image'] = tf.cast(obs['image'], dtype) / 255.0 - 0.5
if 'image_128' in obs.keys():
obs['image_128'] = tf.cast(obs['image_128'], dtype) / 255.0 - 0.5
clip_rewards = dict(none=lambda x: x, tanh=tf.tanh)[config.clip_rewards]
obs['reward'] = clip_rewards(obs['reward'])
for k in obs.keys():
obs[k] = tf.cast(obs[k], dtype)
return obs
def flatten(x):
return tf.reshape(x, [-1] + list(x.shape[2:]))
def preprocess_latent(batch):
dtype = prec.global_policy().compute_dtype
batch = batch.copy()
with tf.device('cpu:0'):
for key in batch.keys():
batch[key] = tf.cast(batch[key], dtype)
return batch
def count_steps(datadir, config):
return tools.count_episodes(datadir)[1] * config.action_repeat
def load_dataset(directory, config):
episode = next(tools.load_episodes(directory, 1000, load_episodes=1))
types = {k: v.dtype for k, v in episode.items()}
shapes = {k: (None,) + v.shape[1:] for k, v in episode.items()}
generator = lambda: tools.load_episodes(directory, config.train_steps,
config.model_batch_length, config.dataset_balance)
dataset = tf.data.Dataset.from_generator(generator, types, shapes)
dataset = dataset.batch(config.model_batch_size, drop_remainder=True)
dataset = dataset.map(functools.partial(preprocess_raw, config=config))
dataset = dataset.prefetch(10)
return dataset
def episode_iterator(datadir, config):
while True:
filenames = list(datadir.glob('*.npz'))
for filename in list(filenames):
yield filename
def summarize_episode(episode, config, datadir, writer, prefix):
length = (len(episode['reward']) - 1) * config.action_repeat
ret = episode['reward'].sum()
print(f'{prefix.title()} episode of length {length} with return {ret:.1f}.')
metrics = [
(f'{prefix}/return', float(episode['reward'].sum())),
(f'{prefix}/length', len(episode['reward']) - 1)]
with writer.as_default(): # Env might run in a different thread.
[tf.summary.scalar('sim/' + k, v) for k, v in metrics]
if prefix == 'test':
tools.video_summary(f'sim/{prefix}/video', episode['image'][None])
def make_env(config, writer, prefix, datadir, store):
suite, task = config.task.split('_', 1)
if suite == 'dmc':
env = wrappers.DeepMindControl(task)
env = wrappers.ActionRepeat(env, config.action_repeat)
env = wrappers.NormalizeActions(env)
elif suite == 'gym':
env = wrappers.Gym(task, config, size=(128, 128))
env = wrappers.ActionRepeat(env, config.action_repeat)
env = wrappers.NormalizeActions(env)
elif task == 'door':
env = wrappers.DoorOpen(config, size=(128, 128))
env = wrappers.ActionRepeat(env, config.action_repeat)
env = wrappers.NormalizeActions(env)
elif task == 'drawer':
env = wrappers.DrawerOpen(config, size=(128, 128))
env = wrappers.ActionRepeat(env, config.action_repeat)
env = wrappers.NormalizeActions(env)
else:
raise NotImplementedError(suite)
env = wrappers.TimeLimit(env, config.time_limit / config.action_repeat)
callbacks = []
if store:
callbacks.append(lambda ep: tools.save_episodes(datadir, [ep]))
if prefix == 'test':
callbacks.append(
lambda ep: summarize_episode(ep, config, datadir, writer, prefix))
env = wrappers.Collect(env, callbacks, config.precision)
env = wrappers.RewardObs(env)
return env
def main(config):
print(config)
# Set random seeds
os.environ['PYTHONHASHSEED'] = str(config.seed)
os.environ['TF_CUDNN_DETERMINISTIC'] = '1'
random.seed(config.seed)
np.random.seed(config.seed)
tf.random.set_seed(config.seed)
if config.gpu_growth:
for gpu in tf.config.experimental.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, True)
config.logdir = config.logdir / config.task
config.logdir = config.logdir / 'seed_{}'.format(config.seed)
config.logdir.mkdir(parents=True, exist_ok=True)
tf_dir = config.logdir / 'tensorboard'
writer = tf.summary.create_file_writer(str(tf_dir), max_queue=1000, flush_millis=20000)
writer.set_as_default()
# Create environments.
train_envs = [wrappers.Async(lambda: make_env(
config, writer, 'train', '.', store=False), config.parallel)
for _ in range(config.envs)]
test_envs = [wrappers.Async(lambda: make_env(
config, writer, 'test', '.', store=False), config.parallel)
for _ in range(config.envs)]
actspace = train_envs[0].action_space
# Train and regularly evaluate the agent.
agent = Lompo(config, config.datadir, actspace, writer)
if agent._c.load_model:
agent.load_model(config.loaddir / 'final_model')
print('Load pretrained model')
else:
agent.fit_model(agent._c.model_train_steps)
agent.save_model(config.logdir)
if agent._c.load_buffer:
agent.latent_buffer.load(agent._c.loaddir / 'buffer.h5py')
else:
agent._process_data_to_latent()
agent.latent_buffer.save(agent._c.logdir / 'buffer.h5py')
if agent._c.load_agent:
agent.load_agent(config.loaddir)
print('Load pretrained actor')
while agent.latent_buffer._latent_stored_steps < agent._c.start_training:
agent._generate_latent_data(next(agent._dataset))
while agent._agent_step < int(config.agent_train_steps):
print('Start evaluation.')
tools.simulate(
functools.partial(agent, training=False), test_envs, episodes=1)
writer.flush()
print('Start collection.')
agent.train_agent(agent._c.agent_iters_per_step)
if config.sample:
agent._add_data(num_episodes=1)
else:
agent._process_data_to_latent(num_episodes=1)
for env in train_envs + test_envs:
env.close()
if __name__ == '__main__':
try:
import colored_traceback
colored_traceback.add_hook()
except ImportError:
pass
parser = argparse.ArgumentParser()
for key, value in define_config().items():
parser.add_argument(f'--{key}', type=tools.args_type(value), default=value)
main(parser.parse_args())