|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from drqv2 import Actor, Encoder, RandomShiftsAug |
|
import utils |
|
|
|
|
|
class BCAgent: |
|
def __init__(self, obs_shape, action_shape, device, lr, feature_dim, |
|
hidden_dim, critic_target_tau, num_expl_steps, |
|
update_every_steps, stddev_schedule, stddev_clip, use_tb, |
|
augmentation=RandomShiftsAug(pad=4)): |
|
self.device = device |
|
self.critic_target_tau = critic_target_tau |
|
self.update_every_steps = update_every_steps |
|
self.use_tb = use_tb |
|
self.num_expl_steps = num_expl_steps |
|
self.stddev_schedule = stddev_schedule |
|
self.stddev_clip = stddev_clip |
|
|
|
|
|
self.encoder = Encoder(obs_shape).to(device) |
|
self.actor = Actor(self.encoder.repr_dim, action_shape, feature_dim, |
|
hidden_dim).to(device) |
|
|
|
|
|
self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=lr) |
|
self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=lr) |
|
|
|
|
|
self.aug = augmentation |
|
|
|
self.train() |
|
|
|
def train(self, training=True): |
|
self.training = training |
|
self.encoder.train(training) |
|
self.actor.train(training) |
|
|
|
def act(self, obs, step, eval_mode): |
|
obs = torch.as_tensor(obs, device=self.device) |
|
obs = self.encoder(obs.unsqueeze(0)) |
|
stddev = utils.schedule(self.stddev_schedule, step) |
|
dist = self.actor(obs, stddev) |
|
if eval_mode: |
|
action = dist.mean |
|
else: |
|
action = dist.sample(clip=None) |
|
if step < self.num_expl_steps: |
|
action.uniform_(-1.0, 1.0) |
|
return action.cpu().numpy()[0] |
|
|
|
def update_actor(self, obs, step, behavioural_action=None): |
|
metrics = dict() |
|
|
|
stddev = utils.schedule(self.stddev_schedule, step) |
|
dist = self.actor(obs, stddev) |
|
action = dist.sample(clip=self.stddev_clip) |
|
log_prob = dist.log_prob(action).sum(-1, keepdim=True) |
|
|
|
|
|
actor_loss = F.mse_loss(action, behavioural_action) |
|
|
|
|
|
self.encoder_opt.zero_grad(set_to_none=True) |
|
self.actor_opt.zero_grad(set_to_none=True) |
|
actor_loss.backward() |
|
self.actor_opt.step() |
|
self.encoder_opt.step() |
|
|
|
if self.use_tb: |
|
metrics['actor_logprob'] = log_prob.mean().item() |
|
metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item() |
|
metrics['actor_bc_loss'] = actor_loss.item() |
|
|
|
return metrics |
|
|
|
def update(self, replay_buffer, step): |
|
metrics = dict() |
|
|
|
if step % self.update_every_steps != 0: |
|
return metrics |
|
|
|
batch = next(replay_buffer) |
|
obs, action, reward, _, _ = utils.to_torch( |
|
batch, self.device) |
|
|
|
|
|
obs = self.aug(obs.float()) |
|
|
|
obs = self.encoder(obs) |
|
|
|
if self.use_tb: |
|
metrics['batch_reward'] = reward.mean().item() |
|
|
|
|
|
metrics.update(self.update_actor(obs, step, action.detach())) |
|
|
|
return metrics |
|
|