vd4rl / drqbc /cql.py
conglu's picture
upload code
6e5cc8b
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import hydra
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
from drqv2 import Actor, Critic, Encoder, RandomShiftsAug, NoShiftAug
class CQLAgent:
def __init__(
self,
obs_shape,
action_shape,
device,
lr,
feature_dim,
hidden_dim,
critic_target_tau,
num_expl_steps,
update_every_steps,
stddev_schedule,
stddev_clip,
use_tb,
offline=False,
augmentation=RandomShiftsAug(pad=4),
# CQL
cql_importance_sample=False,
temp=1.0,
min_q_weight=1.0,
# sort of backup
num_random=10,
with_lagrange=False,
lagrange_thresh=0.0,
):
self.device = device
self.critic_target_tau = critic_target_tau
self.update_every_steps = update_every_steps
self.use_tb = use_tb
self.num_expl_steps = num_expl_steps
self.stddev_schedule = stddev_schedule
self.stddev_clip = stddev_clip
self.offline = offline
# models
self.encoder = Encoder(obs_shape).to(device)
self.actor = Actor(self.encoder.repr_dim, action_shape, feature_dim, hidden_dim).to(device)
self.critic = Critic(self.encoder.repr_dim, action_shape, feature_dim, hidden_dim).to(device)
self.critic_target = Critic(self.encoder.repr_dim, action_shape, feature_dim, hidden_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
# optimizers
self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=lr)
self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=lr)
self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=lr)
# data augmentation
self.aug = augmentation
# CQL
self.with_lagrange = with_lagrange
if self.with_lagrange:
self.target_action_gap = lagrange_thresh
self.log_alpha_prime = torch.zeros(1, requires_grad=True, device=device)
self.alpha_prime_optimizer = torch.optim.Adam([self.log_alpha_prime], lr=lr)
## min Q
self.temp = temp
self.cql_importance_sample = cql_importance_sample
self.min_q_weight = min_q_weight
self.num_random = num_random
self.train()
self.critic_target.train()
def train(self, training=True):
self.training = training
self.encoder.train(training)
self.actor.train(training)
self.critic.train(training)
def act(self, obs, step, eval_mode):
obs = torch.as_tensor(obs, device=self.device)
obs = self.encoder(obs.unsqueeze(0))
stddev = utils.schedule(self.stddev_schedule, step)
dist = self.actor(obs, stddev)
if eval_mode:
action = dist.mean
else:
action = dist.sample(clip=None)
if step < self.num_expl_steps:
action.uniform_(-1.0, 1.0)
return action.cpu().numpy()[0]
def update_critic(self, obs, action, reward, discount, next_obs, step):
metrics = dict()
with torch.no_grad():
stddev = utils.schedule(self.stddev_schedule, step)
dist = self.actor(next_obs, stddev)
next_action = dist.sample(clip=self.stddev_clip)
target_Q1, target_Q2 = self.critic_target(next_obs, next_action)
target_V = torch.min(target_Q1, target_Q2)
target_Q = reward.float() + (discount * target_V)
Q1, Q2 = self.critic(obs, action)
qf1_loss = F.mse_loss(Q1, target_Q)
qf2_loss = F.mse_loss(Q2, target_Q)
# add CQL
if self.offline:
obs = obs.unsqueeze(1).repeat(1, self.num_random, 1)
next_obs = next_obs.unsqueeze(1).repeat(1, self.num_random, 1)
random_actions_tensor = torch.FloatTensor(Q1.shape[0], self.num_random, action.shape[-1]) \
.uniform_(-1, 1).to(self.device)
with torch.no_grad():
curr_dist = self.actor(obs, stddev)
curr_actions_tensor = curr_dist.sample(clip=self.stddev_clip)
curr_log_pis = curr_dist.log_prob(curr_actions_tensor).sum(dim=-1, keepdim=True)
new_curr_dist = self.actor(next_obs, stddev)
new_curr_actions_tensor = new_curr_dist.sample(clip=self.stddev_clip)
new_log_pis = new_curr_dist.log_prob(new_curr_actions_tensor).sum(dim=-1, keepdim=True)
q1_rand, q2_rand = self.critic(obs, random_actions_tensor)
q1_curr_actions, q2_curr_actions = self.critic(obs, curr_actions_tensor)
q1_next_actions, q2_next_actions = self.critic(obs, new_curr_actions_tensor)
if self.cql_importance_sample:
random_density = np.log(0.5 ** curr_actions_tensor.shape[-1])
cat_q1 = torch.cat(
[q1_rand - random_density, q1_next_actions - new_log_pis, q1_curr_actions - curr_log_pis], 1
)
cat_q2 = torch.cat(
[q2_rand - random_density, q2_next_actions - new_log_pis, q2_curr_actions - curr_log_pis], 1
)
else:
cat_q1 = torch.cat([q1_rand, Q1.unsqueeze(1), q1_next_actions, q1_curr_actions], 1)
cat_q2 = torch.cat([q2_rand, Q2.unsqueeze(1), q2_next_actions, q2_curr_actions], 1)
min_qf1_loss = torch.logsumexp(cat_q1 / self.temp, dim=1, ).mean() * self.min_q_weight * self.temp
min_qf2_loss = torch.logsumexp(cat_q2 / self.temp, dim=1, ).mean() * self.min_q_weight * self.temp
"""Subtract the log likelihood of data"""
min_qf1_loss = min_qf1_loss - Q1.mean() * self.min_q_weight
min_qf2_loss = min_qf2_loss - Q2.mean() * self.min_q_weight
if self.with_lagrange:
alpha_prime = torch.clamp(self.log_alpha_prime.exp(), min=0.0, max=1000000.0)
min_qf1_loss = alpha_prime * (min_qf1_loss - self.target_action_gap)
min_qf2_loss = alpha_prime * (min_qf2_loss - self.target_action_gap)
self.alpha_prime_optimizer.zero_grad()
alpha_prime_loss = (-min_qf1_loss - min_qf2_loss) * 0.5
alpha_prime_loss.backward(retain_graph=True)
self.alpha_prime_optimizer.step()
qf1_loss = qf1_loss + min_qf1_loss
qf2_loss = qf2_loss + min_qf2_loss
critic_loss = qf1_loss + qf2_loss
if self.use_tb:
metrics['critic_target_q'] = target_Q.mean().item()
metrics['critic_q1'] = Q1.mean().item()
metrics['critic_q2'] = Q2.mean().item()
metrics['critic_loss'] = critic_loss.item()
if self.offline:
metrics['cql_critic_q1_rand'] = q1_rand.mean().item()
metrics['cql_critic_q2_rand'] = q2_rand.mean().item()
metrics['cql_critic_q1_curr_actions'] = q1_curr_actions.mean().item()
metrics['cql_critic_q2_curr_actions'] = q2_curr_actions.mean().item()
metrics['cql_critic_q1_next_actions'] = q1_next_actions.mean().item()
metrics['cql_critic_q2_next_actions'] = q2_next_actions.mean().item()
metrics['cql_critic_q1_loss'] = min_qf1_loss.item()
metrics['cql_critic_q2_loss'] = min_qf2_loss.item()
# optimize encoder and critic
self.encoder_opt.zero_grad(set_to_none=True)
self.critic_opt.zero_grad(set_to_none=True)
critic_loss.backward()
self.critic_opt.step()
self.encoder_opt.step()
return metrics
def update_actor(self, obs, step):
metrics = dict()
stddev = utils.schedule(self.stddev_schedule, step)
dist = self.actor(obs, stddev)
action = dist.sample(clip=self.stddev_clip)
log_prob = dist.log_prob(action).sum(-1, keepdim=True)
Q1, Q2 = self.critic(obs, action)
Q = torch.min(Q1, Q2)
actor_policy_improvement_loss = -Q.mean()
actor_loss = actor_policy_improvement_loss
# optimize actor
self.actor_opt.zero_grad(set_to_none=True)
actor_loss.backward()
self.actor_opt.step()
if self.use_tb:
metrics['actor_loss'] = actor_policy_improvement_loss.item()
metrics['actor_logprob'] = log_prob.mean().item()
metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item()
return metrics
def update(self, replay_buffer, step):
metrics = dict()
if step % self.update_every_steps != 0:
return metrics
batch = next(replay_buffer)
obs, action, reward, discount, next_obs = utils.to_torch(batch, self.device)
# augment
obs = self.aug(obs.float())
next_obs = self.aug(next_obs.float())
# encode
obs = self.encoder(obs)
with torch.no_grad():
next_obs = self.encoder(next_obs)
if self.use_tb:
metrics['batch_reward'] = reward.mean().item()
# update critic
metrics.update(self.update_critic(obs, action, reward, discount, next_obs, step))
# update actor
metrics.update(self.update_actor(obs.detach(), step))
# update critic target
utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau)
return metrics