vd4rl / drqbc /dmc.py
conglu's picture
upload code
6e5cc8b
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import deque
from typing import Any, NamedTuple
import dm_env
import numpy as np
from dm_control import manipulation, suite
from dm_control.suite.wrappers import action_scale, pixels
from dm_env import StepType, specs
from envs.distracting_control.suite import distracting_wrapper
import envs.fb_mtenv_dmc as fb_mtenv_dmc
def get_unique_int(difficulty: str) -> int:
return int.from_bytes(f'{difficulty}_0'.encode(), 'little') % (2 ** 31)
distracting_kwargs_lookup = {
'easy': {'difficulty': 'easy', 'fixed_distraction': False},
'medium': {'difficulty': 'medium', 'fixed_distraction': False},
'hard': {'difficulty': 'hard', 'fixed_distraction': False},
'fixed_easy': {'difficulty': 'easy', 'fixed_distraction': True, 'color_seed': get_unique_int('easy'),
'background_seed': get_unique_int('easy'), 'camera_seed': get_unique_int('easy')},
'fixed_medium': {'difficulty': 'medium', 'fixed_distraction': True, 'color_seed': get_unique_int('medium'),
'background_seed': get_unique_int('medium'), 'camera_seed': get_unique_int('medium')},
'fixed_hard': {'difficulty': 'hard', 'fixed_distraction': True, 'color_seed': get_unique_int('hard'),
'background_seed': get_unique_int('hard'), 'camera_seed': get_unique_int('hard')},
}
multitask_modes = [f'len_{i}' for i in range(1, 11, 1)]
class ExtendedTimeStep(NamedTuple):
step_type: Any
reward: Any
discount: Any
observation: Any
action: Any
def first(self):
return self.step_type == StepType.FIRST
def mid(self):
return self.step_type == StepType.MID
def last(self):
return self.step_type == StepType.LAST
def __getitem__(self, attr):
return getattr(self, attr)
class ActionRepeatWrapper(dm_env.Environment):
def __init__(self, env, num_repeats):
self._env = env
self._num_repeats = num_repeats
def step(self, action):
reward = 0.0
discount = 1.0
for i in range(self._num_repeats):
time_step = self._env.step(action)
reward += (time_step.reward or 0.0) * discount
discount *= time_step.discount
if time_step.last():
break
return time_step._replace(reward=reward, discount=discount)
def observation_spec(self):
return self._env.observation_spec()
def action_spec(self):
return self._env.action_spec()
def reset(self):
return self._env.reset()
def __getattr__(self, name):
return getattr(self._env, name)
class FrameStackWrapper(dm_env.Environment):
def __init__(self, env, num_frames, pixels_key='pixels'):
self._env = env
self._num_frames = num_frames
self._frames = deque([], maxlen=num_frames)
self._pixels_key = pixels_key
wrapped_obs_spec = env.observation_spec()
assert pixels_key in wrapped_obs_spec
pixels_shape = wrapped_obs_spec[pixels_key].shape
# remove batch dim
if len(pixels_shape) == 4:
pixels_shape = pixels_shape[1:]
self._obs_spec = specs.BoundedArray(shape=np.concatenate(
[[pixels_shape[2] * num_frames], pixels_shape[:2]], axis=0),
dtype=np.uint8,
minimum=0,
maximum=255,
name='observation')
def _transform_observation(self, time_step):
assert len(self._frames) == self._num_frames
obs = np.concatenate(list(self._frames), axis=0)
return time_step._replace(observation=obs)
def _extract_pixels(self, time_step):
pixels = time_step.observation[self._pixels_key]
# remove batch dim
if len(pixels.shape) == 4:
pixels = pixels[0]
return pixels.transpose(2, 0, 1).copy()
def reset(self):
time_step = self._env.reset()
pixels = self._extract_pixels(time_step)
for _ in range(self._num_frames):
self._frames.append(pixels)
return self._transform_observation(time_step)
def step(self, action):
time_step = self._env.step(action)
pixels = self._extract_pixels(time_step)
self._frames.append(pixels)
return self._transform_observation(time_step)
def observation_spec(self):
return self._obs_spec
def action_spec(self):
return self._env.action_spec()
def __getattr__(self, name):
return getattr(self._env, name)
class ActionDTypeWrapper(dm_env.Environment):
def __init__(self, env, dtype):
self._env = env
wrapped_action_spec = env.action_spec()
self._action_spec = specs.BoundedArray(wrapped_action_spec.shape,
dtype,
wrapped_action_spec.minimum,
wrapped_action_spec.maximum,
'action')
def step(self, action):
action = action.astype(self._env.action_spec().dtype)
return self._env.step(action)
def observation_spec(self):
return self._env.observation_spec()
def action_spec(self):
return self._action_spec
def reset(self):
return self._env.reset()
def __getattr__(self, name):
return getattr(self._env, name)
class ExtendedTimeStepWrapper(dm_env.Environment):
def __init__(self, env):
self._env = env
def reset(self):
time_step = self._env.reset()
return self._augment_time_step(time_step)
def step(self, action):
time_step = self._env.step(action)
return self._augment_time_step(time_step, action)
def _augment_time_step(self, time_step, action=None):
if action is None:
action_spec = self.action_spec()
action = np.zeros(action_spec.shape, dtype=action_spec.dtype)
return ExtendedTimeStep(observation=time_step.observation,
step_type=time_step.step_type,
action=action,
reward=time_step.reward or 0.0,
discount=time_step.discount or 1.0)
def observation_spec(self):
return self._env.observation_spec()
def action_spec(self):
return self._env.action_spec()
def __getattr__(self, name):
return getattr(self._env, name)
def make(name, frame_stack, action_repeat, seed, distracting_mode: str = None, multitask_mode: str = None):
pixel_hw = 84
if 'offline' in name:
name = '_'.join(name.split('_')[1:3])
domain, task = name.split('_', 1)
# overwrite cup to ball_in_cup
domain = dict(cup='ball_in_cup').get(domain, domain)
# make sure reward is not visualized
if multitask_mode is None:
if (domain, task) in suite.ALL_TASKS:
env = suite.load(domain,
task,
task_kwargs={'random': seed},
visualize_reward=False)
pixels_key = 'pixels'
else:
name = f'{domain}_{task}_vision'
env = manipulation.load(name, seed=seed)
pixels_key = 'front_close'
else:
assert multitask_mode in multitask_modes, 'Unrecognised length setting'
idx = multitask_mode.split('_', 1)[1]
if domain == 'walker' and task == 'walk':
xml = f'len_{idx}'
elif domain == 'cheetah' and task == 'run':
xml = f'torso_length_{idx}'
else:
raise Exception
env = fb_mtenv_dmc.load(
domain_name=domain,
task_name=task,
task_kwargs={'xml_file_id': xml, 'random': seed},
visualize_reward=False,
)
pixels_key = 'pixels'
# add wrappers
env = ActionDTypeWrapper(env, np.float32)
env = ActionRepeatWrapper(env, action_repeat)
env = action_scale.Wrapper(env, minimum=-1.0, maximum=+1.0)
# add renderings for clasical tasks
if (domain, task) in suite.ALL_TASKS:
# zoom in camera for quadruped
camera_id = dict(quadruped=2).get(domain, 0)
render_kwargs = dict(height=pixel_hw, width=pixel_hw, camera_id=camera_id)
if distracting_mode is not None:
assert distracting_mode in distracting_kwargs_lookup, 'Unrecognised distraction'
kwargs = distracting_kwargs_lookup[distracting_mode]
kwargs['pixels_only'] = True
kwargs['render_kwargs'] = render_kwargs
kwargs['background_dataset_path'] = "DAVIS/JPEGImages/480p/"
env = distracting_wrapper(
env,
domain,
**kwargs
)
else:
env = pixels.Wrapper(env,
pixels_only=True,
render_kwargs=render_kwargs)
# stack several frames
env = FrameStackWrapper(env, frame_stack, pixels_key)
env = ExtendedTimeStepWrapper(env)
return env