|
|
|
|
|
|
|
|
|
import warnings |
|
|
|
warnings.filterwarnings('ignore', category=DeprecationWarning) |
|
|
|
import os |
|
|
|
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1' |
|
os.environ['MUJOCO_GL'] = 'egl' |
|
|
|
from pathlib import Path |
|
import hydra |
|
import numpy as np |
|
import torch |
|
from dm_env import specs |
|
|
|
import dmc |
|
import utils |
|
from logger import Logger |
|
from numpy_replay_buffer import EfficientReplayBuffer |
|
from video import TrainVideoRecorder, VideoRecorder |
|
from utils import load_offline_dataset_into_buffer |
|
|
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
def make_agent(obs_spec, action_spec, cfg): |
|
cfg.obs_shape = obs_spec.shape |
|
cfg.action_shape = action_spec.shape |
|
return hydra.utils.instantiate(cfg) |
|
|
|
|
|
class Workspace: |
|
def __init__(self, cfg): |
|
self.work_dir = Path.cwd() |
|
print(f'workspace: {self.work_dir}') |
|
|
|
self.cfg = cfg |
|
utils.set_seed_everywhere(cfg.seed) |
|
self.device = torch.device(cfg.device) |
|
self.setup() |
|
|
|
self.agent = make_agent(self.train_env.observation_spec(), |
|
self.train_env.action_spec(), |
|
self.cfg.agent) |
|
self.timer = utils.Timer() |
|
self._global_step = 0 |
|
self._global_episode = 0 |
|
|
|
def setup(self): |
|
|
|
self.logger = Logger(self.work_dir, use_tb=self.cfg.use_tb, offline=self.cfg.offline, |
|
distracting_eval=self.cfg.eval_on_distracting, multitask_eval=self.cfg.eval_on_multitask) |
|
|
|
self.train_env = dmc.make(self.cfg.task_name, self.cfg.frame_stack, |
|
self.cfg.action_repeat, self.cfg.seed, self.cfg.distracting_mode) |
|
self.eval_env = dmc.make(self.cfg.task_name, self.cfg.frame_stack, |
|
self.cfg.action_repeat, self.cfg.seed, self.cfg.distracting_mode) |
|
|
|
data_specs = (self.train_env.observation_spec(), |
|
self.train_env.action_spec(), |
|
specs.Array((1,), np.float32, 'reward'), |
|
specs.Array((1,), np.float32, 'discount')) |
|
|
|
self.replay_buffer = EfficientReplayBuffer(self.cfg.replay_buffer_size, |
|
self.cfg.batch_size, |
|
self.cfg.nstep, |
|
self.cfg.discount, |
|
self.cfg.frame_stack, |
|
data_specs) |
|
|
|
self.video_recorder = VideoRecorder( |
|
self.work_dir if self.cfg.save_video else None) |
|
self.train_video_recorder = TrainVideoRecorder( |
|
self.work_dir if self.cfg.save_train_video else None) |
|
|
|
self.eval_on_distracting = self.cfg.eval_on_distracting |
|
self.eval_on_multitask = self.cfg.eval_on_multitask |
|
|
|
@property |
|
def global_step(self): |
|
return self._global_step |
|
|
|
@property |
|
def global_episode(self): |
|
return self._global_episode |
|
|
|
@property |
|
def global_frame(self): |
|
return self.global_step * self.cfg.action_repeat |
|
|
|
def eval(self): |
|
step, episode, total_reward = 0, 0, 0 |
|
eval_until_episode = utils.Until(self.cfg.num_eval_episodes) |
|
|
|
while eval_until_episode(episode): |
|
time_step = self.eval_env.reset() |
|
self.video_recorder.init(self.eval_env, enabled=(episode == 0)) |
|
while not time_step.last(): |
|
with torch.no_grad(), utils.eval_mode(self.agent): |
|
action = self.agent.act(time_step.observation, |
|
self.global_step, |
|
eval_mode=True) |
|
time_step = self.eval_env.step(action) |
|
self.video_recorder.record(self.eval_env) |
|
total_reward += time_step.reward |
|
step += 1 |
|
|
|
episode += 1 |
|
self.video_recorder.save(f'{self.global_frame}.mp4') |
|
|
|
with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log: |
|
log('episode_reward', total_reward / episode) |
|
log('episode_length', step * self.cfg.action_repeat / episode) |
|
log('episode', self.global_episode) |
|
log('step', self.global_step) |
|
|
|
def eval_distracting(self, record_video): |
|
distraction_modes = ['easy', 'medium', 'hard', 'fixed_easy', 'fixed_medium', 'fixed_hard'] |
|
if not hasattr(self, 'distracting_envs'): |
|
self.distracting_envs = [] |
|
for distraction_mode in distraction_modes: |
|
env = dmc.make(self.cfg.task_name, self.cfg.frame_stack, |
|
self.cfg.action_repeat, self.cfg.seed, distracting_mode=distraction_mode) |
|
self.distracting_envs.append(env) |
|
for env, env_name in zip(self.distracting_envs, distraction_modes): |
|
self.eval_single_env(env, env_name, record_video) |
|
|
|
def eval_multitask(self, record_video): |
|
multitask_modes = [f'len_{i}' for i in range(1, 11, 1)] |
|
if not hasattr(self, 'multitask_envs'): |
|
self.multitask_envs = [] |
|
for multitask_mode in multitask_modes: |
|
env = dmc.make(self.cfg.task_name, self.cfg.frame_stack, |
|
self.cfg.action_repeat, self.cfg.seed, multitask_mode=multitask_mode) |
|
self.multitask_envs.append(env) |
|
for env, env_name in zip(self.multitask_envs, multitask_modes): |
|
self.eval_single_env(env, env_name, record_video) |
|
|
|
def eval_single_env(self, env, env_name, save_video): |
|
step, episode, total_reward = 0, 0, 0 |
|
eval_until_episode = utils.Until(self.cfg.num_eval_episodes) |
|
|
|
while eval_until_episode(episode): |
|
time_step = env.reset() |
|
self.video_recorder.init(env, enabled=((episode == 0) and save_video)) |
|
while not time_step.last(): |
|
with torch.no_grad(), utils.eval_mode(self.agent): |
|
action = self.agent.act(time_step.observation, |
|
self.global_step, |
|
eval_mode=True) |
|
time_step = env.step(action) |
|
self.video_recorder.record(env) |
|
total_reward += time_step.reward |
|
step += 1 |
|
|
|
episode += 1 |
|
self.video_recorder.save(f'{env_name}_{self.global_frame}.mp4') |
|
|
|
self.logger.log(f'eval/{env_name}_episode_reward', total_reward / episode, self.global_frame) |
|
|
|
def train(self): |
|
|
|
train_until_step = utils.Until(self.cfg.num_train_frames, |
|
self.cfg.action_repeat) |
|
seed_until_step = utils.Until(self.cfg.num_seed_frames, |
|
self.cfg.action_repeat) |
|
eval_every_step = utils.Every(self.cfg.eval_every_frames, |
|
self.cfg.action_repeat) |
|
|
|
eval_save_vid_every_step = utils.Every(self.cfg.eval_save_vid_every_step, |
|
self.cfg.action_repeat) |
|
|
|
episode_step, episode_reward = 0, 0 |
|
time_step = self.train_env.reset() |
|
self.replay_storage.add(time_step) |
|
self.train_video_recorder.init(time_step.observation) |
|
metrics = None |
|
while train_until_step(self.global_step): |
|
if time_step.last(): |
|
self._global_episode += 1 |
|
self.train_video_recorder.save(f'{self.global_frame}.mp4') |
|
|
|
if metrics is not None: |
|
|
|
elapsed_time, total_time = self.timer.reset() |
|
episode_frame = episode_step * self.cfg.action_repeat |
|
with self.logger.log_and_dump_ctx(self.global_frame, |
|
ty='train') as log: |
|
log('fps', episode_frame / elapsed_time) |
|
log('total_time', total_time) |
|
log('episode_reward', episode_reward) |
|
log('episode_length', episode_frame) |
|
log('episode', self.global_episode) |
|
log('buffer_size', len(self.replay_storage)) |
|
log('step', self.global_step) |
|
|
|
|
|
time_step = self.train_env.reset() |
|
self.replay_storage.add(time_step) |
|
self.train_video_recorder.init(time_step.observation) |
|
|
|
if self.cfg.save_snapshot: |
|
self.save_snapshot() |
|
episode_step = 0 |
|
episode_reward = 0 |
|
|
|
|
|
if eval_every_step(self.global_step): |
|
self.logger.log('eval_total_time', self.timer.total_time(), |
|
self.global_frame) |
|
if self.eval_on_distracting: |
|
self.eval_distracting(eval_save_vid_every_step(self.global_step)) |
|
if self.eval_on_multitask: |
|
self.eval_multitask(eval_save_vid_every_step(self.global_step)) |
|
self.eval() |
|
|
|
|
|
with torch.no_grad(), utils.eval_mode(self.agent): |
|
action = self.agent.act(time_step.observation, |
|
self.global_step, |
|
eval_mode=False) |
|
|
|
|
|
if not seed_until_step(self.global_step): |
|
metrics = self.agent.update(self.replay_iter, self.global_step) |
|
self.logger.log_metrics(metrics, self.global_frame, ty='train') |
|
|
|
|
|
time_step = self.train_env.step(action) |
|
episode_reward += time_step.reward |
|
self.replay_storage.add(time_step) |
|
self.train_video_recorder.record(time_step.observation) |
|
episode_step += 1 |
|
self._global_step += 1 |
|
|
|
def train_offline(self, offline_dir): |
|
|
|
load_offline_dataset_into_buffer(Path(offline_dir), self.replay_buffer, self.cfg.frame_stack, |
|
self.cfg.replay_buffer_size) |
|
|
|
if self.replay_buffer.index == -1: |
|
raise ValueError('No offline data loaded, check directory.') |
|
|
|
|
|
train_until_step = utils.Until(self.cfg.num_train_frames, 1) |
|
eval_every_step = utils.Every(self.cfg.eval_every_frames, 1) |
|
show_train_stats_every_step = utils.Every(self.cfg.show_train_stats_every_frames, 1) |
|
|
|
eval_save_vid_every_step = utils.Every(self.cfg.eval_save_vid_every_step, |
|
self.cfg.action_repeat) |
|
|
|
metrics = None |
|
step = 0 |
|
while train_until_step(self.global_step): |
|
if show_train_stats_every_step(self.global_step): |
|
|
|
if metrics is not None: |
|
|
|
elapsed_time, total_time = self.timer.reset() |
|
with self.logger.log_and_dump_ctx(self.global_frame, |
|
ty='train') as log: |
|
log('fps', step / elapsed_time) |
|
log('total_time', total_time) |
|
log('buffer_size', len(self.replay_buffer)) |
|
log('step', self.global_step) |
|
step = 0 |
|
|
|
if self.cfg.save_snapshot: |
|
self.save_snapshot() |
|
step += 1 |
|
|
|
if eval_every_step(self.global_step): |
|
self.logger.log('eval_total_time', self.timer.total_time(), |
|
self.global_frame) |
|
if self.eval_on_distracting: |
|
self.eval_distracting(eval_save_vid_every_step(self.global_step)) |
|
if self.eval_on_multitask: |
|
self.eval_multitask(eval_save_vid_every_step(self.global_step)) |
|
self.eval() |
|
|
|
|
|
metrics = self.agent.update(self.replay_buffer, self.global_step) |
|
if show_train_stats_every_step(self.global_step): |
|
self.logger.log_metrics(metrics, self.global_frame, ty='train') |
|
|
|
self._global_step += 1 |
|
|
|
def save_snapshot(self): |
|
snapshot = self.work_dir / 'snapshot.pt' |
|
keys_to_save = ['agent', 'timer', '_global_step', '_global_episode'] |
|
payload = {k: self.__dict__[k] for k in keys_to_save} |
|
with snapshot.open('wb') as f: |
|
torch.save(payload, f) |
|
|
|
def load_snapshot(self): |
|
snapshot = self.work_dir / 'snapshot.pt' |
|
with snapshot.open('rb') as f: |
|
payload = torch.load(f) |
|
for k, v in payload.items(): |
|
self.__dict__[k] = v |
|
|
|
|
|
@hydra.main(config_path='cfgs', config_name='config') |
|
def main(cfg): |
|
from train import Workspace as W |
|
root_dir = Path.cwd() |
|
workspace = W(cfg) |
|
print(cfg) |
|
snapshot = root_dir / 'snapshot.pt' |
|
if snapshot.exists(): |
|
print(f'resuming: {snapshot}') |
|
workspace.load_snapshot() |
|
if cfg.offline: |
|
workspace.train_offline(cfg.offline_dir) |
|
else: |
|
workspace.train() |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|