conglu commited on
Commit
75ae30f
·
1 Parent(s): 3534da9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md CHANGED
@@ -1,3 +1,100 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ # V-D4RL
6
+
7
+ <p align="center">
8
+ <img src="figs/envs.png" />
9
+ </p>
10
+
11
+ V-D4RL provides pixel-based analogues of the popular D4RL benchmarking tasks, derived from the **`dm_control`** suite, along with natural extensions of two state-of-the-art online pixel-based continuous control algorithms, DrQ-v2 and DreamerV2, to the offline setting. For further details, please see the paper:
12
+
13
+ **_Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations_**; Cong Lu*, Philip J. Ball*, Tim G. J. Rudner, Jack Parker-Holder, Michael A. Osborne, Yee Whye Teh.
14
+
15
+ <p align="center">
16
+ <a href=https://arxiv.org/abs/2206.04779>View on arXiv</a>
17
+ </p>
18
+
19
+ ## Benchmarks
20
+ The V-D4RL datasets can be found in this repository under `vd4rl`. **These must be downloaded before running the code.** Assuming the data is stored under `vd4rl_data`, the file structure is:
21
+
22
+ ```
23
+ vd4rl_data
24
+ └───main
25
+ │ └───walker_walk
26
+ │ │ └───random
27
+ │ │ │ └───64px
28
+ │ │ │ └───84px
29
+ │ │ └───medium_replay
30
+ │ │ │ ...
31
+ │ └───cheetah_run
32
+ │ │ ...
33
+ │ └───humanoid_walk
34
+ │ │ ...
35
+ └───distracting
36
+ │ ...
37
+ └───multitask
38
+ │ ...
39
+ ```
40
+
41
+ ## Baselines
42
+
43
+ ### Environment Setup
44
+ Requirements are presented in conda environment files named `conda_env.yml` within each folder. The command to create the environment is:
45
+ ```
46
+ conda env create -f conda_env.yml
47
+ ```
48
+
49
+ Alternatively, dockerfiles are located under `dockerfiles`, replace `<<USER_ID>>` in the files with your own user ID from the command `id -u`.
50
+
51
+ ### V-D4RL Main Evaluation
52
+ Example run commands are given below, given an environment type and dataset identifier:
53
+
54
+ ```
55
+ ENVNAME=walker_walk # choice in ['walker_walk', 'cheetah_run', 'humanoid_walk']
56
+ TYPE=random # choice in ['random', 'medium_replay', 'medium', 'medium_expert', 'expert']
57
+ ```
58
+
59
+ #### Offline DV2
60
+ ```
61
+ python offlinedv2/train_offline.py --configs dmc_vision --task dmc_${ENVNAME} --offline_dir vd4rl_data/main/${ENV_NAME}/${TYPE}/64px --offline_penalty_type meandis --offline_lmbd_cons 10 --seed 0
62
+ ```
63
+
64
+ #### DrQ+BC
65
+ ```
66
+ python drqbc/train.py task_name=offline_${ENVNAME}_${TYPE} offline_dir=vd4rl_data/main/${ENV_NAME}/${TYPE}/84px nstep=3 seed=0
67
+ ```
68
+
69
+ #### DrQ+CQL
70
+ ```
71
+ python drqbc/train.py task_name=offline_${ENVNAME}_${TYPE} offline_dir=vd4rl_data/main/${ENV_NAME}/${TYPE}/84px algo=cql cql_importance_sample=false min_q_weight=10 seed=0
72
+ ```
73
+
74
+ #### BC
75
+ ```
76
+ python drqbc/train.py task_name=offline_${ENVNAME}_${TYPE} offline_dir=vd4rl_data/main/${ENV_NAME}/${TYPE}/84px algo=bc seed=0
77
+ ```
78
+
79
+ ### Distracted and Multitask Experiments
80
+ To run the distracted and multitask experiments, it suffices to change the offline directory passed to the commands above.
81
+
82
+ ## Note on data collection and format
83
+ We follow the image sizes and dataset format of each algorithm's native codebase.
84
+ The means that Offline DV2 uses `*.npz` files with 64px images to store the offline data, whereas DrQ+BC uses `*.hdf5` with 84px images.
85
+
86
+ The data collection procedure is detailed in Appendix B of our paper, and we provide conversion scripts in `conversion_scripts`.
87
+ For the original SAC policies to generate the data see [here](https://github.com/philipjball/SAC_PyTorch/blob/dmc_branch/train_agent.py).
88
+ See [here](https://github.com/philipjball/SAC_PyTorch/blob/dmc_branch/gather_offline_data.py) for distracted/multitask variants.
89
+ We used `seed=0` for all data generation.
90
+
91
+ ## Acknowledgements
92
+ V-D4RL builds upon many works and open-source codebases in both offline reinforcement learning and online pixel-based continuous control. We would like to particularly thank the authors of:
93
+ - [D4RL](https://github.com/rail-berkeley/d4rl)
94
+ - [DMControl](https://github.com/deepmind/dm_control)
95
+ - [DreamerV2](https://github.com/danijar/dreamerv2)
96
+ - [DrQ-v2](https://github.com/facebookresearch/drqv2)
97
+ - [LOMPO](https://github.com/rmrafailov/LOMPO)
98
+
99
+ ## Contact
100
+ Please contact [Cong Lu](mailto:[email protected]) or [Philip Ball](mailto:[email protected]) for any queries.