# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import datetime import io import random import traceback from collections import defaultdict import numpy as np import torch import torch.nn as nn from torch.utils.data import IterableDataset def episode_len(episode): # subtract -1 because the dummy first transition return next(iter(episode.values())).shape[0] - 1 def save_episode(episode, fn): with io.BytesIO() as bs: np.savez_compressed(bs, **episode) bs.seek(0) with fn.open('wb') as f: f.write(bs.read()) def load_episode(fn): with fn.open('rb') as f: episode = np.load(f) episode = {k: episode[k] for k in episode.keys()} return episode class ReplayBufferStorage: def __init__(self, data_specs, replay_dir): self._data_specs = data_specs self._replay_dir = replay_dir replay_dir.mkdir(exist_ok=True) self._current_episode = defaultdict(list) self._preload() def __len__(self): return self._num_transitions def add(self, time_step): for spec in self._data_specs: value = time_step[spec.name] if np.isscalar(value): value = np.full(spec.shape, value, spec.dtype) assert spec.shape == value.shape and spec.dtype == value.dtype self._current_episode[spec.name].append(value) if time_step.last(): episode = dict() for spec in self._data_specs: value = self._current_episode[spec.name] episode[spec.name] = np.array(value, spec.dtype) self._current_episode = defaultdict(list) self._store_episode(episode) def _preload(self): self._num_episodes = 0 self._num_transitions = 0 for fn in self._replay_dir.glob('*.npz'): _, _, eps_len = fn.stem.split('_') self._num_episodes += 1 self._num_transitions += int(eps_len) def _store_episode(self, episode): eps_idx = self._num_episodes eps_len = episode_len(episode) self._num_episodes += 1 self._num_transitions += eps_len ts = datetime.datetime.now().strftime('%Y%m%dT%H%M%S') eps_fn = f'{ts}_{eps_idx}_{eps_len}.npz' save_episode(episode, self._replay_dir / eps_fn) class ReplayBuffer(IterableDataset): def __init__(self, replay_dir, max_size, num_workers, nstep, discount, fetch_every, save_snapshot): self._replay_dir = replay_dir self._size = 0 self._max_size = max_size self._num_workers = max(1, num_workers) self._episode_fns = [] self._episodes = dict() self._nstep = nstep self._discount = discount self._fetch_every = fetch_every self._samples_since_last_fetch = fetch_every self._save_snapshot = save_snapshot def _sample_episode(self): eps_fn = random.choice(self._episode_fns) return self._episodes[eps_fn] def _store_episode(self, eps_fn): try: episode = load_episode(eps_fn) except: return False eps_len = episode_len(episode) while eps_len + self._size > self._max_size: early_eps_fn = self._episode_fns.pop(0) early_eps = self._episodes.pop(early_eps_fn) self._size -= episode_len(early_eps) early_eps_fn.unlink(missing_ok=True) self._episode_fns.append(eps_fn) self._episode_fns.sort() self._episodes[eps_fn] = episode self._size += eps_len if not self._save_snapshot: eps_fn.unlink(missing_ok=True) return True def _try_fetch(self): if self._samples_since_last_fetch < self._fetch_every: return self._samples_since_last_fetch = 0 try: worker_id = torch.utils.data.get_worker_info().id except: worker_id = 0 eps_fns = sorted(self._replay_dir.glob('*.npz'), reverse=True) fetched_size = 0 for eps_fn in eps_fns: eps_idx, eps_len = [int(x) for x in eps_fn.stem.split('_')[1:]] if eps_idx % self._num_workers != worker_id: continue if eps_fn in self._episodes.keys(): break if fetched_size + eps_len > self._max_size: break fetched_size += eps_len if not self._store_episode(eps_fn): break def _sample(self): try: self._try_fetch() except: traceback.print_exc() self._samples_since_last_fetch += 1 episode = self._sample_episode() # add +1 for the first dummy transition idx = np.random.randint(0, episode_len(episode) - self._nstep + 1) + 1 obs = episode['observation'][idx - 1] action = episode['action'][idx] next_obs = episode['observation'][idx + self._nstep - 1] reward = np.zeros_like(episode['reward'][idx]) discount = np.ones_like(episode['discount'][idx]) for i in range(self._nstep): step_reward = episode['reward'][idx + i] reward += discount * step_reward discount *= episode['discount'][idx + i] * self._discount return (obs, action, reward, discount, next_obs) def __iter__(self): while True: yield self._sample() def _worker_init_fn(worker_id): seed = np.random.get_state()[1][0] + worker_id np.random.seed(seed) random.seed(seed) def make_replay_loader(replay_dir, max_size, batch_size, num_workers, save_snapshot, nstep, discount): max_size_per_worker = max_size // max(1, num_workers) iterable = ReplayBuffer(replay_dir, max_size_per_worker, num_workers, nstep, discount, fetch_every=1000, save_snapshot=save_snapshot) loader = torch.utils.data.DataLoader(iterable, batch_size=batch_size, num_workers=num_workers, pin_memory=True, worker_init_fn=_worker_init_fn) return loader