import pathlib import numpy as np import h5py import cv2 import argparse def load_episodes(directory, capacity=None): # The returned directory from filenames to episodes is guaranteed to be in # temporally sorted order. filenames = sorted(directory.glob('*.npz')) if capacity: num_steps = 0 num_episodes = 0 for filename in reversed(filenames): length = int(str(filename).split('-')[-1][:-4]) num_steps += length num_episodes += 1 if num_steps >= capacity: break filenames = filenames[-num_episodes:] episodes = {} for filename in filenames: try: with filename.open('rb') as f: episode = np.load(f) episode = {k: episode[k] for k in episode.keys()} # Conversion for older versions of npz files. if 'is_terminal' not in episode: episode['is_terminal'] = episode['discount'] == 0. except Exception as e: print(f'Could not load episode {str(filename)}: {e}') continue episodes[str(filename)] = episode return episodes def main(): # Include argument parser parser = argparse.ArgumentParser(description='Convert npz files to hdf5.') parser.add_argument('--input_dir', type=str, required=True, help='Path to input files') parser.add_argument('--output_dir', type=str, required=True, help='Path to output files') args = parser.parse_args() step_type = np.ones(501) step_type[0] = 0 step_type[500] = 2 output = {} episodes = load_episodes(pathlib.Path(args.input_dir)) episodes = list(episodes.values()) actions = [e['action'] for e in episodes] discounts = [e['discount'] for e in episodes] observations = [] for e in episodes: resized_images = np.empty((501, 84, 84, 3), dtype=e['image'].dtype) for (k, i) in enumerate(e['image']): resized_images[k] = cv2.resize(i, dsize=(84, 84), interpolation=cv2.INTER_CUBIC) observations.append(resized_images.transpose(0, 3, 1, 2)) rewards = [e['reward'] for e in episodes] step_types = [step_type for _ in episodes] output['action'] = np.concatenate(actions) output['discount'] = np.concatenate(discounts) output['observation'] = np.concatenate(observations) output['reward'] = np.concatenate(rewards) output['step_type'] = np.concatenate(step_types) out_dir = pathlib.Path(args.output_dir) out_dir.mkdir(parents=True, exist_ok=True) with h5py.File(out_dir / 'data.hdf5', 'w') as shard_file: for k, v in output.items(): shard_file.create_dataset(k, data=v, compression='gzip') if __name__ == '__main__': main()