# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from drqv2 import Actor, Encoder, RandomShiftsAug import utils class BCAgent: def __init__(self, obs_shape, action_shape, device, lr, feature_dim, hidden_dim, critic_target_tau, num_expl_steps, update_every_steps, stddev_schedule, stddev_clip, use_tb, augmentation=RandomShiftsAug(pad=4)): self.device = device self.critic_target_tau = critic_target_tau self.update_every_steps = update_every_steps self.use_tb = use_tb self.num_expl_steps = num_expl_steps self.stddev_schedule = stddev_schedule self.stddev_clip = stddev_clip # models self.encoder = Encoder(obs_shape).to(device) self.actor = Actor(self.encoder.repr_dim, action_shape, feature_dim, hidden_dim).to(device) # optimizers self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=lr) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=lr) # data augmentation self.aug = augmentation self.train() def train(self, training=True): self.training = training self.encoder.train(training) self.actor.train(training) def act(self, obs, step, eval_mode): obs = torch.as_tensor(obs, device=self.device) obs = self.encoder(obs.unsqueeze(0)) stddev = utils.schedule(self.stddev_schedule, step) dist = self.actor(obs, stddev) if eval_mode: action = dist.mean else: action = dist.sample(clip=None) if step < self.num_expl_steps: action.uniform_(-1.0, 1.0) return action.cpu().numpy()[0] def update_actor(self, obs, step, behavioural_action=None): metrics = dict() stddev = utils.schedule(self.stddev_schedule, step) dist = self.actor(obs, stddev) action = dist.sample(clip=self.stddev_clip) log_prob = dist.log_prob(action).sum(-1, keepdim=True) # offline BC Loss actor_loss = F.mse_loss(action, behavioural_action) # optimize actor and encoder self.encoder_opt.zero_grad(set_to_none=True) self.actor_opt.zero_grad(set_to_none=True) actor_loss.backward() self.actor_opt.step() self.encoder_opt.step() if self.use_tb: metrics['actor_logprob'] = log_prob.mean().item() metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item() metrics['actor_bc_loss'] = actor_loss.item() return metrics def update(self, replay_buffer, step): metrics = dict() if step % self.update_every_steps != 0: return metrics batch = next(replay_buffer) obs, action, reward, _, _ = utils.to_torch( batch, self.device) # augment obs = self.aug(obs.float()) # encode obs = self.encoder(obs) if self.use_tb: metrics['batch_reward'] = reward.mean().item() # update actor metrics.update(self.update_actor(obs, step, action.detach())) return metrics