import numpy as np import abc class AbstractReplayBuffer(abc.ABC): @abc.abstractmethod def add(self, time_step): pass @abc.abstractmethod def __next__(self, ): pass @abc.abstractmethod def __len__(self, ): pass class EfficientReplayBuffer(AbstractReplayBuffer): '''Fast + efficient replay buffer implementation in numpy.''' def __init__(self, buffer_size, batch_size, nstep, discount, frame_stack, data_specs=None, sarsa=False): self.buffer_size = buffer_size self.data_dict = {} self.index = -1 self.traj_index = 0 self.frame_stack = frame_stack self._recorded_frames = frame_stack + 1 self.batch_size = batch_size self.nstep = nstep self.discount = discount self.full = False self.discount_vec = np.power(discount, np.arange(nstep)) # n_step - first dim should broadcast self.next_dis = discount ** nstep self.sarsa = sarsa def _initial_setup(self, time_step): self.index = 0 self.obs_shape = list(time_step.observation.shape) self.ims_channels = self.obs_shape[0] // self.frame_stack self.act_shape = time_step.action.shape self.obs = np.zeros([self.buffer_size, self.ims_channels, *self.obs_shape[1:]], dtype=np.uint8) self.act = np.zeros([self.buffer_size, *self.act_shape], dtype=np.float32) self.rew = np.zeros([self.buffer_size], dtype=np.float32) self.dis = np.zeros([self.buffer_size], dtype=np.float32) self.valid = np.zeros([self.buffer_size], dtype=np.bool_) def add_data_point(self, time_step): first = time_step.first() latest_obs = time_step.observation[-self.ims_channels:] if first: end_index = self.index + self.frame_stack end_invalid = end_index + self.frame_stack + 1 if end_invalid > self.buffer_size: if end_index > self.buffer_size: end_index = end_index % self.buffer_size self.obs[self.index:self.buffer_size] = latest_obs self.obs[0:end_index] = latest_obs self.full = True else: self.obs[self.index:end_index] = latest_obs end_invalid = end_invalid % self.buffer_size self.valid[self.index:self.buffer_size] = False self.valid[0:end_invalid] = False else: self.obs[self.index:end_index] = latest_obs self.valid[self.index:end_invalid] = False self.index = end_index self.traj_index = 1 else: np.copyto(self.obs[self.index], latest_obs) # Check most recent image np.copyto(self.act[self.index], time_step.action) self.rew[self.index] = time_step.reward self.dis[self.index] = time_step.discount self.valid[(self.index + self.frame_stack) % self.buffer_size] = False if self.traj_index >= self.nstep: self.valid[(self.index - self.nstep + 1) % self.buffer_size] = True self.index += 1 self.traj_index += 1 if self.index == self.buffer_size: self.index = 0 self.full = True def add(self, time_step): if self.index == -1: self._initial_setup(time_step) self.add_data_point(time_step) def __next__(self, ): indices = np.random.choice(self.valid.nonzero()[0], size=self.batch_size) return self.gather_nstep_indices(indices) def gather_nstep_indices(self, indices): n_samples = indices.shape[0] all_gather_ranges = np.stack([np.arange(indices[i] - self.frame_stack, indices[i] + self.nstep) for i in range(n_samples)], axis=0) % self.buffer_size gather_ranges = all_gather_ranges[:, self.frame_stack:] # bs x nstep obs_gather_ranges = all_gather_ranges[:, :self.frame_stack] nobs_gather_ranges = all_gather_ranges[:, -self.frame_stack:] all_rewards = self.rew[gather_ranges] # Could implement below operation as a matmul in pytorch for marginal additional speed improvement rew = np.sum(all_rewards * self.discount_vec, axis=1, keepdims=True) obs = np.reshape(self.obs[obs_gather_ranges], [n_samples, *self.obs_shape]) nobs = np.reshape(self.obs[nobs_gather_ranges], [n_samples, *self.obs_shape]) act = self.act[indices] dis = np.expand_dims(self.next_dis * self.dis[nobs_gather_ranges[:, -1]], axis=-1) if self.sarsa: nact = self.act[indices + self.nstep] return (obs, act, rew, dis, nobs, nact) return (obs, act, rew, dis, nobs) def __len__(self): if self.full: return self.buffer_size else: return self.index def get_train_and_val_indices(self, validation_percentage): all_indices = self.valid.nonzero()[0] num_indices = all_indices.shape[0] num_val = int(num_indices * validation_percentage) np.random.shuffle(all_indices) val_indices, train_indices = np.split(all_indices, [num_val]) return train_indices, val_indices def get_obs_act_batch(self, indices): n_samples = indices.shape[0] obs_gather_ranges = np.stack([np.arange(indices[i] - self.frame_stack, indices[i]) for i in range(n_samples)], axis=0) % self.buffer_size obs = np.reshape(self.obs[obs_gather_ranges], [n_samples, *self.obs_shape]) act = self.act[indices] return obs, act