import argparse import collections import functools import itertools import json import multiprocessing as mp import os import pathlib import re import subprocess import warnings os.environ['NO_AT_BRIDGE'] = '1' # Hide X org false warning. import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pandas as pd np.set_string_function(lambda x: f'') Run = collections.namedtuple('Run', 'task method seed xs ys') PALETTES = dict( discrete=( '#377eb8', '#4daf4a', '#984ea3', '#e41a1c', '#ff7f00', '#a65628', '#f781bf', '#888888', '#a6cee3', '#b2df8a', '#cab2d6', '#fb9a99', ), contrast=( '#0022ff', '#33aa00', '#ff0011', '#ddaa00', '#cc44dd', '#0088aa', '#001177', '#117700', '#990022', '#885500', '#553366', '#006666', ), gradient=( '#fde725', '#a0da39', '#4ac16d', '#1fa187', '#277f8e', '#365c8d', '#46327e', '#440154', ), baselines=( '#222222', '#666666', '#aaaaaa', '#cccccc', ), ) LEGEND = dict( fontsize='medium', numpoints=1, labelspacing=0, columnspacing=1.2, handlelength=1.5, handletextpad=0.5, loc='lower center') DEFAULT_BASELINES = ['d4pg', 'rainbow_sticky', 'human_gamer', 'impala'] def find_keys(args): filenames = [] for indir in args.indir: task = next(indir.iterdir()) # First only. for method in task.iterdir(): seed = next(indir.iterdir()) # First only. filenames += list(seed.glob('**/*.jsonl')) keys = set() for filename in filenames: keys |= set(load_jsonl(filename).columns) print(f'Keys ({len(keys)}):', ', '.join(keys), flush=True) def load_runs(args): total, toload = [], [] for indir in args.indir: filenames = list(indir.glob('**/*.jsonl')) total += filenames for filename in filenames: task, method, seed = filename.relative_to(indir).parts[:-1] if not any(p.search(task) for p in args.tasks): continue if not any(p.search(method) for p in args.methods): continue toload.append((filename, indir)) print(f'Loading {len(toload)} of {len(total)} runs...') jobs = [functools.partial(load_run, f, i, args) for f, i in toload] # Disable async data loading: # runs = [j() for j in jobs] with mp.Pool(10) as pool: promises = [pool.apply_async(j) for j in jobs] runs = [p.get() for p in promises] runs = [r for r in runs if r is not None] return runs def load_run(filename, indir, args): task, method, seed = filename.relative_to(indir).parts[:-1] prefix = f'indir{args.indir.index(indir) + 1}_' if task == 'atari_jamesbond': task = 'atari_james_bond' seed = prefix + seed if args.prefix: method = prefix + method df = load_jsonl(filename) if df is None: print('Skipping empty run') return try: df = df[[args.xaxis, args.yaxis]].dropna() if args.maxval: df = df.replace([+np.inf], +args.maxval) df = df.replace([-np.inf], -args.maxval) df[args.yaxis] = df[args.yaxis].clip(-args.maxval, +args.maxval) except KeyError: return xs = df[args.xaxis].to_numpy() if args.xmult != 1: xs = xs.astype(np.float32) * args.xmult ys = df[args.yaxis].to_numpy() bins = { 'atari': 1e6, 'dmc': 1e4, 'crafter': 1e4, }.get(task.split('_')[0], 1e5) if args.bins == -1 else args.bins if bins: borders = np.arange(0, xs.max() + 1e-8, bins) xs, ys = bin_scores(xs, ys, borders) if not len(xs): print('Skipping empty run', task, method, seed) return return Run(task, method, seed, xs, ys) def load_baselines(patterns, prefix=False): runs = [] directory = pathlib.Path(__file__).parent.parent / 'scores' for filename in directory.glob('**/*_baselines.json'): for task, methods in json.loads(filename.read_text()).items(): for method, score in methods.items(): if prefix: method = f'baseline_{method}' if not any(p.search(method) for p in patterns): continue runs.append(Run(task, method, None, None, score)) return runs def stats(runs, baselines): tasks = sorted(set(r.task for r in runs)) methods = sorted(set(r.method for r in runs)) seeds = sorted(set(r.seed for r in runs)) baseline = sorted(set(r.method for r in baselines)) print('Loaded', len(runs), 'runs.') print(f'Tasks ({len(tasks)}):', ', '.join(tasks)) print(f'Methods ({len(methods)}):', ', '.join(methods)) print(f'Seeds ({len(seeds)}):', ', '.join(seeds)) print(f'Baselines ({len(baseline)}):', ', '.join(baseline)) def order_methods(runs, baselines, args): methods = [] for pattern in args.methods: for method in sorted(set(r.method for r in runs)): if pattern.search(method): if method not in methods: methods.append(method) if method not in args.colors: index = len(args.colors) % len(args.palette) args.colors[method] = args.palette[index] non_baseline_colors = len(args.colors) for pattern in args.baselines: for method in sorted(set(r.method for r in baselines)): if pattern.search(method): if method not in methods: methods.append(method) if method not in args.colors: index = len(args.colors) - non_baseline_colors index = index % len(PALETTES['baselines']) args.colors[method] = PALETTES['baselines'][index] return methods def figure(runs, methods, args): tasks = sorted(set(r.task for r in runs if r.xs is not None)) rows = int(np.ceil((len(tasks) + len(args.add)) / args.cols)) figsize = args.size[0] * args.cols, args.size[1] * rows fig, axes = plt.subplots(rows, args.cols, figsize=figsize, squeeze=False) for task, ax in zip(tasks, axes.flatten()): relevant = [r for r in runs if r.task == task] plot(task, ax, relevant, methods, args) for name, ax in zip(args.add, axes.flatten()[len(tasks):]): ax.set_facecolor((0.9, 0.9, 0.9)) if name == 'median': plot_combined( 'combined_median', ax, runs, methods, args, agg=lambda x: np.nanmedian(x, -1)) elif name == 'mean': plot_combined( 'combined_mean', ax, runs, methods, args, agg=lambda x: np.nanmean(x, -1)) elif name == 'gamer_median': plot_combined( 'combined_gamer_median', ax, runs, methods, args, lo='random', hi='human_gamer', agg=lambda x: np.nanmedian(x, -1)) elif name == 'gamer_mean': plot_combined( 'combined_gamer_mean', ax, runs, methods, args, lo='random', hi='human_gamer', agg=lambda x: np.nanmean(x, -1)) elif name == 'record_mean': plot_combined( 'combined_record_mean', ax, runs, methods, args, lo='random', hi='record', agg=lambda x: np.nanmean(x, -1)) elif name == 'clip_record_mean': plot_combined( 'combined_clipped_record_mean', ax, runs, methods, args, lo='random', hi='record', clip=True, agg=lambda x: np.nanmean(x, -1)) elif name == 'seeds': plot_combined( 'combined_seeds', ax, runs, methods, args, agg=lambda x: np.isfinite(x).sum(-1)) elif name == 'human_above': plot_combined( 'combined_above_human_gamer', ax, runs, methods, args, agg=lambda y: (y >= 1.0).astype(float).sum(-1)) elif name == 'human_below': plot_combined( 'combined_below_human_gamer', ax, runs, methods, args, agg=lambda y: (y <= 1.0).astype(float).sum(-1)) else: raise NotImplementedError(name) if args.xlim: for ax in axes[:-1].flatten(): ax.xaxis.get_offset_text().set_visible(False) if args.xlabel: for ax in axes[-1]: ax.set_xlabel(args.xlabel) if args.ylabel: for ax in axes[:, 0]: ax.set_ylabel(args.ylabel) for ax in axes.flatten()[len(tasks) + len(args.add):]: ax.axis('off') legend(fig, args.labels, ncol=args.legendcols, **LEGEND) return fig def plot(task, ax, runs, methods, args): assert runs try: title = task.split('_', 1)[1].replace('_', ' ').title() except IndexError: title = task.title() ax.set_title(title) xlim = [+np.inf, -np.inf] for index, method in enumerate(methods): relevant = [r for r in runs if r.method == method] if not relevant: continue if any(r.xs is None for r in relevant): baseline(index, method, ax, relevant, args) else: if args.agg == 'none': xs, ys = curve_lines(index, task, method, ax, relevant, args) else: xs, ys = curve_area(index, task, method, ax, relevant, args) if len(xs) == len(ys) == 0: print(f'Skipping empty: {task} {method}') continue xlim = [min(xlim[0], np.nanmin(xs)), max(xlim[1], np.nanmax(xs))] ax.ticklabel_format(axis='x', style='sci', scilimits=(0, 0)) steps = [1, 2, 2.5, 5, 10] ax.xaxis.set_major_locator(ticker.MaxNLocator(args.xticks, steps=steps)) ax.yaxis.set_major_locator(ticker.MaxNLocator(args.yticks, steps=steps)) if np.isfinite(xlim).all(): ax.set_xlim(args.xlim or xlim) if args.xlim: ticks = sorted({*ax.get_xticks(), *args.xlim}) ticks = [x for x in ticks if args.xlim[0] <= x <= args.xlim[1]] ax.set_xticks(ticks) if args.ylim: ax.set_ylim(args.ylim) if args.ylimticks: ticks = sorted({*ax.get_yticks(), *args.ylim}) ticks = [x for x in ticks if args.ylim[0] <= x <= args.ylim[1]] ax.set_yticks(ticks) def plot_combined( name, ax, runs, methods, args, agg, lo=None, hi=None, clip=False): tasks = sorted(set(run.task for run in runs if run.xs is not None)) seeds = list(set(run.seed for run in runs)) runs = [r for r in runs if r.task in tasks] # Discard unused baselines. # Bin all runs onto the same X steps. borders = sorted( [r.xs for r in runs if r.xs is not None], key=lambda x: np.nanmax(x))[-1] for index, run in enumerate(runs): if run.xs is None: continue xs, ys = bin_scores(run.xs, run.ys, borders, fill='last') runs[index] = run._replace(xs=xs, ys=ys) # Per-task normalization by low and high baseline. if lo or hi: mins = collections.defaultdict(list) maxs = collections.defaultdict(list) [mins[r.task].append(r.ys) for r in load_baselines([re.compile(lo)])] [maxs[r.task].append(r.ys) for r in load_baselines([re.compile(hi)])] mins = {task: min(ys) for task, ys in mins.items() if task in tasks} maxs = {task: max(ys) for task, ys in maxs.items() if task in tasks} missing_baselines = [] for task in tasks: if task not in mins or task not in maxs: missing_baselines.append(task) if set(missing_baselines) == set(tasks): print(f'No baselines found to normalize any tasks in {name} plot.') else: for task in missing_baselines: print(f'No baselines found to normalize {task} in {name} plot.') for index, run in enumerate(runs): if run.task not in mins or run.task not in maxs: continue ys = (run.ys - mins[run.task]) / (maxs[run.task] - mins[run.task]) if clip: ys = np.minimum(ys, 1.0) runs[index] = run._replace(ys=ys) # Aggregate across tasks but not methods or seeds. combined = [] for method, seed in itertools.product(methods, seeds): relevant = [r for r in runs if r.method == method and r.seed == seed] if not relevant: continue if relevant[0].xs is None: xs, ys = None, np.array([r.ys for r in relevant]) else: xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in relevant])) with warnings.catch_warnings(): # Ignore empty slice warnings. warnings.simplefilter('ignore', category=RuntimeWarning) combined.append(Run('combined', method, seed, xs, agg(ys))) plot(name, ax, combined, methods, args) def curve_lines(index, task, method, ax, runs, args): zorder = 10000 - 10 * index - 1 for run in runs: color = args.colors[method] ax.plot(run.xs, run.ys, label=method, color=color, zorder=zorder) xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in runs])) return xs, ys def curve_area(index, task, method, ax, runs, args): xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in runs])) with warnings.catch_warnings(): # NaN buckets remain NaN. warnings.simplefilter('ignore', category=RuntimeWarning) if args.agg == 'std1': mean, std = np.nanmean(ys, -1), np.nanstd(ys, -1) lo, mi, hi = mean - std, mean, mean + std elif args.agg == 'per0': lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (0, 50, 100)] elif args.agg == 'per5': lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (5, 50, 95)] elif args.agg == 'per25': lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (25, 50, 75)] else: raise NotImplementedError(args.agg) color = args.colors[method] kw = dict(color=color, zorder=1000 - 10 * index, alpha=0.1, linewidths=0) mask = ~np.isnan(mi) xs, lo, mi, hi = xs[mask], lo[mask], mi[mask], hi[mask] ax.fill_between(xs, lo, hi, **kw) ax.plot(xs, mi, label=method, color=color, zorder=10000 - 10 * index - 1) return xs, mi def baseline(index, method, ax, runs, args): assert all(run.xs is None for run in runs) ys = np.array([run.ys for run in runs]) mean, std = ys.mean(), ys.std() color = args.colors[method] kw = dict(color=color, zorder=500 - 20 * index - 1, alpha=0.1, linewidths=0) ax.fill_between([-np.inf, np.inf], [mean - std] * 2, [mean + std] * 2, **kw) kw = dict(ls='--', color=color, zorder=5000 - 10 * index - 1) ax.axhline(mean, label=method, **kw) def legend(fig, mapping=None, **kwargs): entries = {} for ax in fig.axes: for handle, label in zip(*ax.get_legend_handles_labels()): if mapping and label in mapping: label = mapping[label] entries[label] = handle leg = fig.legend(entries.values(), entries.keys(), **kwargs) leg.get_frame().set_edgecolor('white') extent = leg.get_window_extent(fig.canvas.get_renderer()) extent = extent.transformed(fig.transFigure.inverted()) yloc, xloc = kwargs['loc'].split() y0 = dict(lower=extent.y1, center=0, upper=0)[yloc] y1 = dict(lower=1, center=1, upper=extent.y0)[yloc] x0 = dict(left=extent.x1, center=0, right=0)[xloc] x1 = dict(left=1, center=1, right=extent.x0)[xloc] fig.tight_layout(rect=[x0, y0, x1, y1], h_pad=0.5, w_pad=0.5) def save(fig, args): args.outdir.mkdir(parents=True, exist_ok=True) filename = args.outdir / 'curves.png' fig.savefig(filename, dpi=args.dpi) print('Saved to', filename) filename = args.outdir / 'curves.pdf' fig.savefig(filename) try: subprocess.call(['pdfcrop', str(filename), str(filename)]) except FileNotFoundError: print('Install texlive-extra-utils to crop PDF outputs.') def bin_scores(xs, ys, borders, reducer=np.nanmean, fill='nan'): order = np.argsort(xs) xs, ys = xs[order], ys[order] binned = [] with warnings.catch_warnings(): # Empty buckets become NaN. warnings.simplefilter('ignore', category=RuntimeWarning) for start, stop in zip(borders[:-1], borders[1:]): left = (xs <= start).sum() right = (xs <= stop).sum() if left < right: value = reducer(ys[left:right]) elif binned: value = {'nan': np.nan, 'last': binned[-1]}[fill] else: value = np.nan binned.append(value) return borders[1:], np.array(binned) def stack_scores(multiple_xs, multiple_ys, fill='last'): longest_xs = sorted(multiple_xs, key=lambda x: len(x))[-1] multiple_padded_ys = [] for xs, ys in zip(multiple_xs, multiple_ys): assert (longest_xs[:len(xs)] == xs).all(), (list(xs), list(longest_xs)) value = {'nan': np.nan, 'last': ys[-1]}[fill] padding = [value] * (len(longest_xs) - len(xs)) padded_ys = np.concatenate([ys, padding]) multiple_padded_ys.append(padded_ys) stacked_ys = np.stack(multiple_padded_ys, -1) return longest_xs, stacked_ys def load_jsonl(filename): try: with filename.open() as f: lines = list(f.readlines()) records = [] for index, line in enumerate(lines): try: records.append(json.loads(line)) except Exception: if index == len(lines) - 1: continue # Silently skip last line if it is incomplete. raise ValueError( f'Skipping invalid JSON line ({index + 1}/{len(lines) + 1}) in' f'{filename}: {line}') return pd.DataFrame(records) except ValueError as e: print('Invalid', filename, e) return None def save_runs(runs, filename): filename.parent.mkdir(parents=True, exist_ok=True) records = [] for run in runs: if run.xs is None: continue records.append(dict( task=run.task, method=run.method, seed=run.seed, xs=run.xs.tolist(), ys=run.ys.tolist())) runs = json.dumps(records) filename.write_text(runs) print('Saved', filename) def main(args): find_keys(args) runs = load_runs(args) save_runs(runs, args.outdir / 'runs.json') baselines = load_baselines(args.baselines, args.prefix) stats(runs, baselines) methods = order_methods(runs, baselines, args) if not runs: print('Noting to plot.') return # Adjust options based on loaded runs. tasks = set(r.task for r in runs) if 'auto' in args.add: index = args.add.index('auto') del args.add[index] atari = any(run.task.startswith('atari_') for run in runs) if len(tasks) < 2: pass elif atari: args.add[index:index] = [ 'gamer_median', 'gamer_mean', 'record_mean', 'clip_record_mean', ] else: args.add[index:index] = ['mean', 'median'] args.cols = min(args.cols, len(tasks) + len(args.add)) args.legendcols = min(args.legendcols, args.cols) print('Plotting...') fig = figure(runs + baselines, methods, args) save(fig, args) def parse_args(): boolean = lambda x: bool(['False', 'True'].index(x)) parser = argparse.ArgumentParser() parser.add_argument('--indir', nargs='+', type=pathlib.Path, required=True) parser.add_argument('--indir-prefix', type=pathlib.Path) parser.add_argument('--outdir', type=pathlib.Path, required=True) parser.add_argument('--subdir', type=boolean, default=True) parser.add_argument('--xaxis', type=str, default='step') parser.add_argument('--yaxis', type=str, default='eval_return') parser.add_argument('--tasks', nargs='+', default=[r'.*']) parser.add_argument('--methods', nargs='+', default=[r'.*']) parser.add_argument('--baselines', nargs='+', default=DEFAULT_BASELINES) parser.add_argument('--prefix', type=boolean, default=False) parser.add_argument('--bins', type=float, default=-1) parser.add_argument('--agg', type=str, default='std1') parser.add_argument('--size', nargs=2, type=float, default=[2.5, 2.3]) parser.add_argument('--dpi', type=int, default=80) parser.add_argument('--cols', type=int, default=6) parser.add_argument('--xlim', nargs=2, type=float, default=None) parser.add_argument('--ylim', nargs=2, type=float, default=None) parser.add_argument('--ylimticks', type=boolean, default=True) parser.add_argument('--xlabel', type=str, default=None) parser.add_argument('--ylabel', type=str, default=None) parser.add_argument('--xticks', type=int, default=6) parser.add_argument('--yticks', type=int, default=5) parser.add_argument('--xmult', type=float, default=1) parser.add_argument('--labels', nargs='+', default=None) parser.add_argument('--palette', nargs='+', default=['contrast']) parser.add_argument('--legendcols', type=int, default=4) parser.add_argument('--colors', nargs='+', default={}) parser.add_argument('--maxval', type=float, default=0) parser.add_argument('--add', nargs='+', type=str, default=['auto', 'seeds']) args = parser.parse_args() if args.subdir: args.outdir /= args.indir[0].stem if args.indir_prefix: args.indir = [args.indir_prefix / indir for indir in args.indir] args.indir = [d.expanduser() for d in args.indir] args.outdir = args.outdir.expanduser() if args.labels: assert len(args.labels) % 2 == 0 args.labels = {k: v for k, v in zip(args.labels[:-1], args.labels[1:])} if args.colors: assert len(args.colors) % 2 == 0 args.colors = {k: v for k, v in zip(args.colors[:-1], args.colors[1:])} args.tasks = [re.compile(p) for p in args.tasks] args.methods = [re.compile(p) for p in args.methods] args.baselines = [re.compile(p) for p in args.baselines] if 'return' not in args.yaxis: args.baselines = [] if args.prefix is None: args.prefix = len(args.indir) > 1 if len(args.palette) == 1 and args.palette[0] in PALETTES: args.palette = 10 * PALETTES[args.palette[0]] if len(args.add) == 1 and args.add[0] == 'none': args.add = [] return args if __name__ == '__main__': main(parse_args())