--- license: apache-2.0 configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: id dtype: string - name: contents dtype: string - name: title dtype: string - name: wikipedia_id dtype: string splits: - name: train num_bytes: 18038881943 num_examples: 35678076 download_size: 10150820540 dataset_size: 18038881943 language: - en --- # KILT Corpus This dataset contains approximately 36 million Wikipedia passages from the "[Multi-task retrieval for knowledge-intensive tasks](https://arxiv.org/pdf/2101.00117)" paper. It is also the retrieval corpus used in the paper [Chain-of-Retrieval Augmented Generation](https://arxiv.org/pdf/2501.14342). ## Fields * `id`: A unique identifier for each passage. * `title`: The title of the Wikipedia page from which the passage originates. * `contents`: The textual content of the passage. * `wikipedia_id`: The unique identifier for the Wikipedia page, used for KILT evaluation. ## How to Load the Dataset You can easily load this dataset using the `datasets` library from Hugging Face. Make sure you have the library installed (`pip install datasets`). ```python from datasets import load_dataset ds = load_dataset('corag/kilt-corpus', split='train') # You can inspect the dataset structure and the first few examples: print(ds) print(ds[0]) ``` ## References ``` @article{maillard2021multi, title={Multi-task retrieval for knowledge-intensive tasks}, author={Maillard, Jean and Karpukhin, Vladimir and Petroni, Fabio and Yih, Wen-tau and O{\u{g}}uz, Barlas and Stoyanov, Veselin and Ghosh, Gargi}, journal={arXiv preprint arXiv:2101.00117}, year={2021} } @article{wang2025chain, title={Chain-of-Retrieval Augmented Generation}, author={Wang, Liang and Chen, Haonan and Yang, Nan and Huang, Xiaolong and Dou, Zhicheng and Wei, Furu}, journal={arXiv preprint arXiv:2501.14342}, year={2025} } ```