Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
ianporada commited on
Commit
2657459
·
verified ·
1 Parent(s): 40bfb79

Upload dpr_raw.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. dpr_raw.py +105 -0
dpr_raw.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """The Definite Pronoun Resolution Dataset."""
18
+
19
+
20
+ import datasets
21
+
22
+
23
+ _CITATION = """\
24
+ @inproceedings{rahman2012resolving,
25
+ title={Resolving complex cases of definite pronouns: the winograd schema challenge},
26
+ author={Rahman, Altaf and Ng, Vincent},
27
+ booktitle={Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning},
28
+ pages={777--789},
29
+ year={2012},
30
+ organization={Association for Computational Linguistics}
31
+ }"""
32
+
33
+ _DESCRIPTION = """\
34
+ Composed by 30 students from one of the author's undergraduate classes. These
35
+ sentence pairs cover topics ranging from real events (e.g., Iran's plan to
36
+ attack the Saudi ambassador to the U.S.) to events/characters in movies (e.g.,
37
+ Batman) and purely imaginary situations, largely reflecting the pop culture as
38
+ perceived by the American kids born in the early 90s. Each annotated example
39
+ spans four lines: the first line contains the sentence, the second line contains
40
+ the target pronoun, the third line contains the two candidate antecedents, and
41
+ the fourth line contains the correct antecedent. If the target pronoun appears
42
+ more than once in the sentence, its first occurrence is the one to be resolved.
43
+ """
44
+
45
+
46
+ _DATA_URL_PATTERN = "https://s3.amazonaws.com/datasets.huggingface.co/definite_pronoun_resolution/{}.c.txt"
47
+
48
+
49
+ class DefinitePronounResolution(datasets.GeneratorBasedBuilder):
50
+ """The Definite Pronoun Resolution Dataset."""
51
+
52
+ BUILDER_CONFIGS = [
53
+ datasets.BuilderConfig(
54
+ name="plain_text",
55
+ version=datasets.Version("1.0.0", ""),
56
+ description="Plain text import of the Definite Pronoun Resolution Dataset.", # pylint: disable=line-too-long
57
+ )
58
+ ]
59
+
60
+ def _info(self):
61
+ return datasets.DatasetInfo(
62
+ description=_DESCRIPTION,
63
+ features=datasets.Features(
64
+ {
65
+ "sentence": datasets.Value("string"),
66
+ "pronoun": datasets.Value("string"),
67
+ "candidates": datasets.features.Sequence(datasets.Value("string"), length=2),
68
+ "label": datasets.features.ClassLabel(num_classes=2),
69
+ }
70
+ ),
71
+ supervised_keys=("sentence", "label"),
72
+ homepage="http://www.hlt.utdallas.edu/~vince/data/emnlp12/",
73
+ citation=_CITATION,
74
+ )
75
+
76
+ def _split_generators(self, dl_manager):
77
+ files = dl_manager.download_and_extract(
78
+ {
79
+ "train": _DATA_URL_PATTERN.format("train"),
80
+ "test": _DATA_URL_PATTERN.format("test"),
81
+ }
82
+ )
83
+ return [
84
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": files["test"]}),
85
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": files["train"]}),
86
+ ]
87
+
88
+ def _generate_examples(self, filepath):
89
+ with open(filepath, encoding="utf-8") as f:
90
+ line_num = -1
91
+ while True:
92
+ line_num += 1
93
+ sentence = f.readline().strip()
94
+ pronoun = f.readline().strip()
95
+ candidates = [c.strip() for c in f.readline().strip().split(",")]
96
+ correct = f.readline().strip()
97
+ f.readline()
98
+ if not sentence:
99
+ break
100
+ yield line_num, {
101
+ "sentence": sentence,
102
+ "pronoun": pronoun,
103
+ "candidates": candidates,
104
+ "label": candidates.index(correct),
105
+ }