{
  "results": {
    "omnis-voluptatibus_lsat-rc_base": {
      "acc,none": 0.26022304832713755,
      "acc_stderr,none": 0.02680130130545777,
      "alias": "omnis-voluptatibus_lsat-rc_base"
    },
    "omnis-voluptatibus_lsat-lr_base": {
      "acc,none": 0.22549019607843138,
      "acc_stderr,none": 0.018523301713974177,
      "alias": "omnis-voluptatibus_lsat-lr_base"
    },
    "omnis-voluptatibus_lsat-ar_base": {
      "acc,none": 0.2,
      "acc_stderr,none": 0.026432744018203558,
      "alias": "omnis-voluptatibus_lsat-ar_base"
    },
    "omnis-voluptatibus_logiqa_base": {
      "acc,none": 0.2731629392971246,
      "acc_stderr,none": 0.017823353125231246,
      "alias": "omnis-voluptatibus_logiqa_base"
    },
    "omnis-voluptatibus_logiqa2_base": {
      "acc,none": 0.29961832061068705,
      "acc_stderr,none": 0.011557488735539868,
      "alias": "omnis-voluptatibus_logiqa2_base"
    },
    "magnam-eius_lsat-rc_base": {
      "acc,none": 0.26765799256505574,
      "acc_stderr,none": 0.027044545314587297,
      "alias": "magnam-eius_lsat-rc_base"
    },
    "magnam-eius_lsat-lr_base": {
      "acc,none": 0.23333333333333334,
      "acc_stderr,none": 0.018747043716590736,
      "alias": "magnam-eius_lsat-lr_base"
    },
    "magnam-eius_lsat-ar_base": {
      "acc,none": 0.1956521739130435,
      "acc_stderr,none": 0.026214799709819582,
      "alias": "magnam-eius_lsat-ar_base"
    },
    "magnam-eius_logiqa_base": {
      "acc,none": 0.26517571884984026,
      "acc_stderr,none": 0.017657069155771605,
      "alias": "magnam-eius_logiqa_base"
    },
    "magnam-eius_logiqa2_base": {
      "acc,none": 0.30025445292620867,
      "acc_stderr,none": 0.011564495931583802,
      "alias": "magnam-eius_logiqa2_base"
    },
    "libero-exercitationem_lsat-rc_base": {
      "acc,none": 0.2899628252788104,
      "acc_stderr,none": 0.0277168778552269,
      "alias": "libero-exercitationem_lsat-rc_base"
    },
    "libero-exercitationem_lsat-lr_base": {
      "acc,none": 0.23333333333333334,
      "acc_stderr,none": 0.01874704371659074,
      "alias": "libero-exercitationem_lsat-lr_base"
    },
    "libero-exercitationem_lsat-ar_base": {
      "acc,none": 0.2565217391304348,
      "acc_stderr,none": 0.02885881431530565,
      "alias": "libero-exercitationem_lsat-ar_base"
    },
    "libero-exercitationem_logiqa_base": {
      "acc,none": 0.3003194888178914,
      "acc_stderr,none": 0.01833587493212361,
      "alias": "libero-exercitationem_logiqa_base"
    },
    "libero-exercitationem_logiqa2_base": {
      "acc,none": 0.2913486005089059,
      "acc_stderr,none": 0.011463961006875415,
      "alias": "libero-exercitationem_logiqa2_base"
    },
    "illum-eaque_lsat-rc_base": {
      "acc,none": 0.30855018587360594,
      "acc_stderr,none": 0.02821472627233907,
      "alias": "illum-eaque_lsat-rc_base"
    },
    "illum-eaque_lsat-lr_base": {
      "acc,none": 0.23529411764705882,
      "acc_stderr,none": 0.018801558887410308,
      "alias": "illum-eaque_lsat-lr_base"
    },
    "illum-eaque_lsat-ar_base": {
      "acc,none": 0.21304347826086956,
      "acc_stderr,none": 0.027057754389936205,
      "alias": "illum-eaque_lsat-ar_base"
    },
    "illum-eaque_logiqa_base": {
      "acc,none": 0.2715654952076677,
      "acc_stderr,none": 0.017790679673144884,
      "alias": "illum-eaque_logiqa_base"
    },
    "illum-eaque_logiqa2_base": {
      "acc,none": 0.28944020356234096,
      "acc_stderr,none": 0.011441728828144178,
      "alias": "illum-eaque_logiqa2_base"
    },
    "amet-ullam_lsat-rc_base": {
      "acc,none": 0.2936802973977695,
      "acc_stderr,none": 0.027820867578650918,
      "alias": "amet-ullam_lsat-rc_base"
    },
    "amet-ullam_lsat-lr_base": {
      "acc,none": 0.2235294117647059,
      "acc_stderr,none": 0.018465920069400513,
      "alias": "amet-ullam_lsat-lr_base"
    },
    "amet-ullam_lsat-ar_base": {
      "acc,none": 0.21739130434782608,
      "acc_stderr,none": 0.027256850838819964,
      "alias": "amet-ullam_lsat-ar_base"
    },
    "amet-ullam_logiqa_base": {
      "acc,none": 0.28434504792332266,
      "acc_stderr,none": 0.018044076774157373,
      "alias": "amet-ullam_logiqa_base"
    },
    "amet-ullam_logiqa2_base": {
      "acc,none": 0.2881679389312977,
      "acc_stderr,none": 0.011426770634965262,
      "alias": "amet-ullam_logiqa2_base"
    },
    "accusantium-inventore_lsat-rc_base": {
      "acc,none": 0.2936802973977695,
      "acc_stderr,none": 0.02782086757865092,
      "alias": "accusantium-inventore_lsat-rc_base"
    },
    "accusantium-inventore_lsat-lr_base": {
      "acc,none": 0.20980392156862746,
      "acc_stderr,none": 0.01804742911247611,
      "alias": "accusantium-inventore_lsat-lr_base"
    },
    "accusantium-inventore_lsat-ar_base": {
      "acc,none": 0.23043478260869565,
      "acc_stderr,none": 0.027827807522276156,
      "alias": "accusantium-inventore_lsat-ar_base"
    },
    "accusantium-inventore_logiqa_base": {
      "acc,none": 0.3019169329073482,
      "acc_stderr,none": 0.018363576929614513,
      "alias": "accusantium-inventore_logiqa_base"
    },
    "accusantium-inventore_logiqa2_base": {
      "acc,none": 0.2913486005089059,
      "acc_stderr,none": 0.011463961006875417,
      "alias": "accusantium-inventore_logiqa2_base"
    }
  },
  "configs": {
    "accusantium-inventore_logiqa2_base": {
      "task": "accusantium-inventore_logiqa2_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "accusantium-inventore-logiqa2/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "accusantium-inventore_logiqa_base": {
      "task": "accusantium-inventore_logiqa_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "accusantium-inventore-logiqa/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "accusantium-inventore_lsat-ar_base": {
      "task": "accusantium-inventore_lsat-ar_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "accusantium-inventore-lsat-ar/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "accusantium-inventore_lsat-lr_base": {
      "task": "accusantium-inventore_lsat-lr_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "accusantium-inventore-lsat-lr/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "accusantium-inventore_lsat-rc_base": {
      "task": "accusantium-inventore_lsat-rc_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "accusantium-inventore-lsat-rc/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "amet-ullam_logiqa2_base": {
      "task": "amet-ullam_logiqa2_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "amet-ullam-logiqa2/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "amet-ullam_logiqa_base": {
      "task": "amet-ullam_logiqa_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "amet-ullam-logiqa/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "amet-ullam_lsat-ar_base": {
      "task": "amet-ullam_lsat-ar_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "amet-ullam-lsat-ar/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "amet-ullam_lsat-lr_base": {
      "task": "amet-ullam_lsat-lr_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "amet-ullam-lsat-lr/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "amet-ullam_lsat-rc_base": {
      "task": "amet-ullam_lsat-rc_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "amet-ullam-lsat-rc/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "illum-eaque_logiqa2_base": {
      "task": "illum-eaque_logiqa2_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "illum-eaque-logiqa2/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "illum-eaque_logiqa_base": {
      "task": "illum-eaque_logiqa_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "illum-eaque-logiqa/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "illum-eaque_lsat-ar_base": {
      "task": "illum-eaque_lsat-ar_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "illum-eaque-lsat-ar/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "illum-eaque_lsat-lr_base": {
      "task": "illum-eaque_lsat-lr_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "illum-eaque-lsat-lr/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "illum-eaque_lsat-rc_base": {
      "task": "illum-eaque_lsat-rc_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "illum-eaque-lsat-rc/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "libero-exercitationem_logiqa2_base": {
      "task": "libero-exercitationem_logiqa2_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "libero-exercitationem-logiqa2/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "libero-exercitationem_logiqa_base": {
      "task": "libero-exercitationem_logiqa_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "libero-exercitationem-logiqa/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "libero-exercitationem_lsat-ar_base": {
      "task": "libero-exercitationem_lsat-ar_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "libero-exercitationem-lsat-ar/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "libero-exercitationem_lsat-lr_base": {
      "task": "libero-exercitationem_lsat-lr_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "libero-exercitationem-lsat-lr/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "libero-exercitationem_lsat-rc_base": {
      "task": "libero-exercitationem_lsat-rc_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "libero-exercitationem-lsat-rc/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "magnam-eius_logiqa2_base": {
      "task": "magnam-eius_logiqa2_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "magnam-eius-logiqa2/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "magnam-eius_logiqa_base": {
      "task": "magnam-eius_logiqa_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "magnam-eius-logiqa/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "magnam-eius_lsat-ar_base": {
      "task": "magnam-eius_lsat-ar_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "magnam-eius-lsat-ar/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "magnam-eius_lsat-lr_base": {
      "task": "magnam-eius_lsat-lr_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "magnam-eius-lsat-lr/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "magnam-eius_lsat-rc_base": {
      "task": "magnam-eius_lsat-rc_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "magnam-eius-lsat-rc/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "omnis-voluptatibus_logiqa2_base": {
      "task": "omnis-voluptatibus_logiqa2_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "omnis-voluptatibus-logiqa2/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "omnis-voluptatibus_logiqa_base": {
      "task": "omnis-voluptatibus_logiqa_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "omnis-voluptatibus-logiqa/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "omnis-voluptatibus_lsat-ar_base": {
      "task": "omnis-voluptatibus_lsat-ar_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "omnis-voluptatibus-lsat-ar/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "omnis-voluptatibus_lsat-lr_base": {
      "task": "omnis-voluptatibus_lsat-lr_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "omnis-voluptatibus-lsat-lr/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "omnis-voluptatibus_lsat-rc_base": {
      "task": "omnis-voluptatibus_lsat-rc_base",
      "group": "logikon-bench",
      "dataset_path": "logikon/cot-eval-traces",
      "dataset_kwargs": {
        "data_files": {
          "test": "omnis-voluptatibus-lsat-rc/test-00000-of-00001.parquet"
        }
      },
      "test_split": "test",
      "doc_to_text": "def doc_to_text(doc) -> str:\n    \"\"\"\n    Answer the following question about the given passage.\n    \n    Passage: <passage>\n    \n    Question: <question>\n    A. <choice1>\n    B. <choice2>\n    C. <choice3>\n    D. <choice4>\n    [E. <choice5>]\n        \n    Answer:\n    \"\"\"\n    k = len(doc[\"options\"])\n    choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n    prompt = \"Answer the following question about the given passage.\\n\\n\"\n    prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n    prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n    for choice, option in zip(choices, doc[\"options\"]):\n        prompt += f\"{choice.upper()}. {option}\\n\"\n    prompt += \"\\n\"\n    prompt += \"Answer:\"\n    return prompt\n",
      "doc_to_target": "{{answer}}",
      "doc_to_choice": "{{options}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    }
  },
  "versions": {
    "accusantium-inventore_logiqa2_base": 0.0,
    "accusantium-inventore_logiqa_base": 0.0,
    "accusantium-inventore_lsat-ar_base": 0.0,
    "accusantium-inventore_lsat-lr_base": 0.0,
    "accusantium-inventore_lsat-rc_base": 0.0,
    "amet-ullam_logiqa2_base": 0.0,
    "amet-ullam_logiqa_base": 0.0,
    "amet-ullam_lsat-ar_base": 0.0,
    "amet-ullam_lsat-lr_base": 0.0,
    "amet-ullam_lsat-rc_base": 0.0,
    "illum-eaque_logiqa2_base": 0.0,
    "illum-eaque_logiqa_base": 0.0,
    "illum-eaque_lsat-ar_base": 0.0,
    "illum-eaque_lsat-lr_base": 0.0,
    "illum-eaque_lsat-rc_base": 0.0,
    "libero-exercitationem_logiqa2_base": 0.0,
    "libero-exercitationem_logiqa_base": 0.0,
    "libero-exercitationem_lsat-ar_base": 0.0,
    "libero-exercitationem_lsat-lr_base": 0.0,
    "libero-exercitationem_lsat-rc_base": 0.0,
    "magnam-eius_logiqa2_base": 0.0,
    "magnam-eius_logiqa_base": 0.0,
    "magnam-eius_lsat-ar_base": 0.0,
    "magnam-eius_lsat-lr_base": 0.0,
    "magnam-eius_lsat-rc_base": 0.0,
    "omnis-voluptatibus_logiqa2_base": 0.0,
    "omnis-voluptatibus_logiqa_base": 0.0,
    "omnis-voluptatibus_lsat-ar_base": 0.0,
    "omnis-voluptatibus_lsat-lr_base": 0.0,
    "omnis-voluptatibus_lsat-rc_base": 0.0
  },
  "n-shot": {
    "accusantium-inventore_logiqa2_base": 0,
    "accusantium-inventore_logiqa_base": 0,
    "accusantium-inventore_lsat-ar_base": 0,
    "accusantium-inventore_lsat-lr_base": 0,
    "accusantium-inventore_lsat-rc_base": 0,
    "amet-ullam_logiqa2_base": 0,
    "amet-ullam_logiqa_base": 0,
    "amet-ullam_lsat-ar_base": 0,
    "amet-ullam_lsat-lr_base": 0,
    "amet-ullam_lsat-rc_base": 0,
    "illum-eaque_logiqa2_base": 0,
    "illum-eaque_logiqa_base": 0,
    "illum-eaque_lsat-ar_base": 0,
    "illum-eaque_lsat-lr_base": 0,
    "illum-eaque_lsat-rc_base": 0,
    "libero-exercitationem_logiqa2_base": 0,
    "libero-exercitationem_logiqa_base": 0,
    "libero-exercitationem_lsat-ar_base": 0,
    "libero-exercitationem_lsat-lr_base": 0,
    "libero-exercitationem_lsat-rc_base": 0,
    "magnam-eius_logiqa2_base": 0,
    "magnam-eius_logiqa_base": 0,
    "magnam-eius_lsat-ar_base": 0,
    "magnam-eius_lsat-lr_base": 0,
    "magnam-eius_lsat-rc_base": 0,
    "omnis-voluptatibus_logiqa2_base": 0,
    "omnis-voluptatibus_logiqa_base": 0,
    "omnis-voluptatibus_lsat-ar_base": 0,
    "omnis-voluptatibus_lsat-lr_base": 0,
    "omnis-voluptatibus_lsat-rc_base": 0
  },
  "config": {
    "model": "vllm",
    "model_args": "pretrained=01-ai/Yi-6B,revision=main,dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.9,trust_remote_code=true,max_length=4096",
    "batch_size": "auto",
    "batch_sizes": [],
    "device": null,
    "use_cache": null,
    "limit": null,
    "bootstrap_iters": 100000,
    "gen_kwargs": null
  },
  "git_hash": "5044cf9"
}