File size: 10,539 Bytes
2b2f744 70f4226 7e951ff 2b2f744 7e951ff 2b3c98b 2b2f744 535608c 70f4226 535608c 2b2f744 aab1635 7e951ff 2b2f744 3dad049 2b2f744 70f4226 2b2f744 3dad049 2b2f744 535608c 2b2f744 3dad049 2b2f744 3dad049 2b2f744 535608c 2b2f744 3dad049 2b2f744 3dad049 2b2f744 535608c 2b2f744 7e951ff 70f4226 7e951ff 535608c 2b2f744 7e951ff 2b3c98b 7e951ff 70f4226 7e951ff 535608c 7e951ff 535608c 2b3c98b 535608c 70f4226 535608c 70f4226 535608c 70f4226 535608c 70f4226 535608c 70f4226 535608c 70f4226 9d3d980 535608c 9d3d980 70f4226 535608c 70f4226 535608c 70f4226 535608c 70f4226 535608c 70f4226 535608c 2b3c98b 70f4226 535608c 70f4226 535608c 70f4226 535608c 70f4226 535608c 70f4226 535608c 70f4226 535608c 70f4226 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# coding=utf-8
"""
SyntaxGym dataset as used in Hu et al. (2020).
"""
from collections import defaultdict
from copy import deepcopy
import json
from pathlib import Path
import re
from typing import List, Dict, Tuple
from typing_extensions import TypedDict
import datasets
from datasets import logging
import numpy as np
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from .prediction import Prediction
_CITATION = """
@inproceedings{Hu:et-al:2020,
author = {Hu, Jennifer and Gauthier, Jon and Qian, Peng and Wilcox, Ethan and Levy, Roger},
title = {A systematic assessment of syntactic generalization in neural language models},
booktitle = {Proceedings of the Association of Computational Linguistics},
year = {2020}
}
"""
_DESCRIPTION = "" # TODO
_PROJECT_URL = "https://syntaxgym.org"
_DOWNLOAD_URL = "https://raw.githubusercontent.com/cpllab/syntactic-generalization/nextflow/test_suites/json/"
def condition_to_string(cond):
ret = " ".join([region["content"].lstrip()
for region in cond["regions"]
if region["content"].strip() != ""])
ret = re.sub(r"\s+,", ",", ret)
return ret
class SyntaxGymSuiteConfig(datasets.BuilderConfig):
def __init__(self, name, version=datasets.Version("1.0.0"), **kwargs):
description = f"SyntaxGym test suite {name}.\n" + _DESCRIPTION
super().__init__(name=name, description=description, version=version,
**kwargs)
SUITE_DATASET_CONDITION_SPEC = {
"condition_name": datasets.Value("string"),
"content": datasets.Value("string"),
"regions": datasets.Sequence({
"region_number": datasets.Value("int32"),
"content": datasets.Value("string")
})
}
SUITE_DATASET_SPEC = {
"item_number": datasets.Value("int32"),
"conditions": datasets.Sequence(SUITE_DATASET_CONDITION_SPEC),
"predictions": datasets.Sequence(datasets.Value("string")),
}
class SyntaxGym(datasets.GeneratorBasedBuilder):
SUITES = [
"center_embed", "center_embed_mod",
"cleft", "cleft_modifier",
"fgd_hierarchy", "fgd_object",
"fgd_pp", "fgd_subject",
"mvrr", "mvrr_mod",
"npi_orc_any", "npi_orc_ever", "npi_src_any", "npi_src_ever",
"npz_ambig", "npz_ambig_mod", "npz_obj", "npz_obj_mod",
"number_orc", "number_prep", "number_src",
"reflexive_orc_fem", "reflexive_orc_masc",
"reflexive_prep_fem", "reflexive_prep_masc",
"reflexive_src_fem", "reflexive_src_masc",
"subordination", "subordination_orc-orc",
"subordination_pp-pp", "subordination_src-src",
]
BUILDER_CONFIGS = [SyntaxGymSuiteConfig(suite_name)
for suite_name in SUITES]
def _info(self):
citation = ""
# print(self.BUILDER_CONFIGS)
# if self.config.meta["reference"]:
# citation = f"Test suite citation: {self.meta['reference']}\n"
citation += f"SyntaxGym citation:\n{_CITATION}"
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(SUITE_DATASET_SPEC),
homepage=_PROJECT_URL,
citation=citation,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
download_url = _DOWNLOAD_URL + f"{self.config.name}.json"
downloaded_file = dl_manager.download_and_extract(download_url)
return [datasets.SplitGenerator(name=datasets.Split.TEST,
gen_kwargs={"filepath": downloaded_file})]
def _generate_examples(self, filepath):
with open(filepath, "r", encoding="utf-8") as f:
suite_json = json.load(f)
predictions = [p["formula"] for p in suite_json["predictions"]]
for item in suite_json["items"]:
# Convert to sentence input.
for cond in item["conditions"]:
cond["content"] = condition_to_string(cond)
item["predictions"] = predictions
yield item["item_number"], item
class SyntaxGymMetricResult(TypedDict):
prediction_results: List[List[bool]]
region_totals: List[Dict[Tuple[str, int], float]]
class SyntaxGymMetric(datasets.Metric):
"""
SyntaxGym prediction evaluation metric.
"""
def _info(self):
seq = datasets.Sequence
features = datasets.Features({
"suite": SUITE_DATASET_SPEC
})
return datasets.MetricInfo(
description="TODO",
citation=_CITATION,
inputs_description="TODO",
features=features,
)
def _compute(self, suite, model_id, batch_size: int = 16,
add_start_token=True, device=None
) -> SyntaxGymMetricResult:
if device is not None:
assert device in ["gpu", "cpu", "cuda"]
if device == "gpu":
device = "cuda"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(model_id)
model = model.to(device)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_id)
# TODO copy from perplexity metric
tokenizer.pad_token = tokenizer.eos_token
results = {"prediction_results": [], "region_totals": []}
# TODO batch all items together
for item in logging.tqdm(suite):
result_single = self._compute_single(item, tokenizer, model, device)
for k in ["prediction_results", "region_totals"]:
results[k].append(result_single[k])
return results
def _compute_single(self, item, tokenizer, model, device):
tokenized = tokenizer(item["conditions"]["content"],
padding=True,
return_tensors="pt",
return_offsets_mapping=True).to(device)
# input_ids: B * T
input_ids = tokenized["input_ids"]
assert input_ids.ndim == 2
# Compute sentence level surprisals.
with torch.no_grad():
# Pre-softmax predictive distribution B * T * V
logits = model(input_ids).logits
surprisals = -logits.log_softmax(dim=2) / np.log(2)
# surprisals: B * T * V
assert surprisals.ndim == 3
# Get surprisals of expected words.
surps_shifted = surprisals[:, :-1, :]
expected_ids = input_ids[:, 1:]
# TODO: check this logic
tt = expected_ids.unsqueeze(2)
surprisals = torch.gather(surps_shifted, 2, expected_ids.unsqueeze(2)) \
.squeeze(2)
# This is the original, which works but not with multiple axes in expected_ids
# surprisals = surps_shifted[range(surps_shifted.shape[0]), expected_ids]
# surprisals is now B * (T - 1)
#### aggregate
condition_names = item["conditions"]["condition_name"]
region_totals = {condition_name: defaultdict(float)
for condition_name in condition_names}
region2tokens = self.compute_region_token_mapping(
item, input_ids, tokenized["offset_mapping"])
for i, (i_cond, i_inputs) in enumerate(zip(condition_names, input_ids)):
for region_number, region_tokens in region2tokens[i_cond].items():
for token in region_tokens:
if token < surprisals.shape[1]:
region_totals[i_cond][region_number] += surprisals[i, token]
else:
# TODO don't think this is an issue, just should clean
# up the aggregation output
assert token == surprisals.shape[1], \
"%s %s" % (token, surprisals.shape[1])
region_totals = {(condition_name, region_number): float(total)
for condition_name, totals in region_totals.items()
for region_number, total in totals.items()}
results = {
"prediction_results": [
Prediction(i, formula, "sum").formula(region_totals)
for i, formula in enumerate(item["predictions"])
],
"region_totals": region_totals
}
return results
def get_region_edges(self, item, condition_idx):
"""
Get left edge of each region as a character index.
"""
# NB this is coupled with `condition_to_string` logic of course
regions = item["conditions"]["regions"][condition_idx]
idx = 0
ret = []
for r_idx, region_content in enumerate(regions["content"]):
ret.append(idx)
region_size = len(region_content)
if region_content.strip() != "" and r_idx != 0 and not region_content.startswith(","):
# Add joining space
region_size += 1
idx += region_size
return ret
def compute_region_token_mapping(self, item, input_ids: torch.LongTensor,
offset_mapping: List[Tuple[int, int]]
) -> Dict[str, Dict[int, List[int]]]:
# input_ids: B * T
# offset_mapping: B * T * 2
# assumes batch is sorted according to item's condition_name order
condition_names = item["conditions"]["condition_name"]
region2tokens = {cond: defaultdict(list) for cond in condition_names}
max_long = torch.iinfo(torch.int64).max
input_ids = input_ids.detach()
for i_cond, (i_tokens, i_offsets) in enumerate(zip(input_ids, offset_mapping)):
region_edges = self.get_region_edges(item, i_cond)
t_cursor, r_cursor = 0, 0
while t_cursor < i_tokens.shape[0]:
# token = i_tokens[t_cursor]
token_char_start, token_char_end = i_offsets[t_cursor]
region_start = region_edges[r_cursor]
region_end = region_edges[r_cursor + 1] \
if r_cursor + 1 < len(region_edges) else max_long
# NB region boundaries are left edges, hence the >= here.
if token_char_start >= region_end:
r_cursor += 1
continue
region2tokens[condition_names[i_cond]][r_cursor + 1].append(t_cursor)
t_cursor += 1
return region2tokens
|