Datasets:

Modalities:
Text
Libraries:
Datasets
File size: 10,539 Bytes
2b2f744
 
 
 
 
 
 
70f4226
7e951ff
2b2f744
 
7e951ff
2b3c98b
 
2b2f744
 
535608c
70f4226
 
535608c
2b2f744
aab1635
7e951ff
2b2f744
 
 
 
 
 
 
 
 
 
 
 
 
 
3dad049
2b2f744
 
70f4226
 
 
 
 
 
 
 
 
2b2f744
 
3dad049
2b2f744
 
 
 
 
535608c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b2f744
 
3dad049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b2f744
 
 
3dad049
 
 
2b2f744
 
 
 
535608c
2b2f744
 
 
 
 
3dad049
 
2b2f744
3dad049
 
 
 
 
2b2f744
535608c
2b2f744
 
7e951ff
 
70f4226
7e951ff
535608c
 
2b2f744
7e951ff
 
2b3c98b
 
 
 
 
7e951ff
 
 
 
 
 
70f4226
7e951ff
535608c
7e951ff
 
 
 
 
 
 
 
535608c
2b3c98b
 
535608c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f4226
 
535608c
70f4226
 
535608c
 
 
 
 
 
 
 
 
70f4226
 
 
 
 
 
 
 
 
 
 
 
 
 
535608c
70f4226
 
 
535608c
70f4226
 
 
 
 
 
 
 
 
535608c
 
70f4226
9d3d980
 
 
 
 
 
535608c
 
9d3d980
 
 
 
 
70f4226
535608c
70f4226
 
 
 
 
535608c
70f4226
 
 
535608c
70f4226
 
535608c
 
70f4226
 
 
 
 
 
 
535608c
2b3c98b
 
70f4226
 
535608c
70f4226
535608c
70f4226
 
535608c
 
70f4226
535608c
 
70f4226
 
 
 
 
 
 
 
535608c
70f4226
 
 
 
 
 
535608c
70f4226
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# coding=utf-8

"""
SyntaxGym dataset as used in Hu et al. (2020).
"""


from collections import defaultdict
from copy import deepcopy
import json
from pathlib import Path
import re
from typing import List, Dict, Tuple
from typing_extensions import TypedDict

import datasets
from datasets import logging
import numpy as np
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

from .prediction import Prediction


_CITATION = """
@inproceedings{Hu:et-al:2020,
  author = {Hu, Jennifer and Gauthier, Jon and Qian, Peng and Wilcox, Ethan and Levy, Roger},
  title = {A systematic assessment of syntactic generalization in neural language models},
  booktitle = {Proceedings of the Association of Computational Linguistics},
  year = {2020}
}
"""

_DESCRIPTION = ""   # TODO


_PROJECT_URL = "https://syntaxgym.org"
_DOWNLOAD_URL = "https://raw.githubusercontent.com/cpllab/syntactic-generalization/nextflow/test_suites/json/"


def condition_to_string(cond):
    ret = " ".join([region["content"].lstrip()
                    for region in cond["regions"]
                    if region["content"].strip() != ""])
    ret = re.sub(r"\s+,", ",", ret)

    return ret


class SyntaxGymSuiteConfig(datasets.BuilderConfig):

    def __init__(self, name, version=datasets.Version("1.0.0"), **kwargs):
        description = f"SyntaxGym test suite {name}.\n" + _DESCRIPTION
        super().__init__(name=name, description=description, version=version,
                         **kwargs)


SUITE_DATASET_CONDITION_SPEC = {
    "condition_name": datasets.Value("string"),
    "content": datasets.Value("string"),
    "regions": datasets.Sequence({
        "region_number": datasets.Value("int32"),
        "content": datasets.Value("string")
    })
}

SUITE_DATASET_SPEC = {
    "item_number": datasets.Value("int32"),
    "conditions": datasets.Sequence(SUITE_DATASET_CONDITION_SPEC),
    "predictions": datasets.Sequence(datasets.Value("string")),
}


class SyntaxGym(datasets.GeneratorBasedBuilder):

    SUITES = [
        "center_embed", "center_embed_mod",
        "cleft", "cleft_modifier",
        "fgd_hierarchy", "fgd_object",
        "fgd_pp", "fgd_subject",
        "mvrr", "mvrr_mod",
        "npi_orc_any", "npi_orc_ever", "npi_src_any", "npi_src_ever",
        "npz_ambig", "npz_ambig_mod", "npz_obj", "npz_obj_mod",
        "number_orc", "number_prep", "number_src",
        "reflexive_orc_fem", "reflexive_orc_masc",
        "reflexive_prep_fem", "reflexive_prep_masc",
        "reflexive_src_fem", "reflexive_src_masc",
        "subordination", "subordination_orc-orc",
        "subordination_pp-pp", "subordination_src-src",
    ]
    BUILDER_CONFIGS = [SyntaxGymSuiteConfig(suite_name)
                       for suite_name in SUITES]

    def _info(self):
        citation = ""
        # print(self.BUILDER_CONFIGS)
        # if self.config.meta["reference"]:
        #     citation = f"Test suite citation: {self.meta['reference']}\n"
        citation += f"SyntaxGym citation:\n{_CITATION}"

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(SUITE_DATASET_SPEC),
            homepage=_PROJECT_URL,
            citation=citation,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        download_url = _DOWNLOAD_URL + f"{self.config.name}.json"
        downloaded_file = dl_manager.download_and_extract(download_url)
        return [datasets.SplitGenerator(name=datasets.Split.TEST,
                                        gen_kwargs={"filepath": downloaded_file})]

    def _generate_examples(self, filepath):
        with open(filepath, "r", encoding="utf-8") as f:
            suite_json = json.load(f)

        predictions = [p["formula"] for p in suite_json["predictions"]]

        for item in suite_json["items"]:
            # Convert to sentence input.
            for cond in item["conditions"]:
                cond["content"] = condition_to_string(cond)

            item["predictions"] = predictions

            yield item["item_number"], item


class SyntaxGymMetricResult(TypedDict):
    prediction_results: List[List[bool]]
    region_totals: List[Dict[Tuple[str, int], float]]


class SyntaxGymMetric(datasets.Metric):
    """
    SyntaxGym prediction evaluation metric.
    """

    def _info(self):
        seq = datasets.Sequence
        features = datasets.Features({
            "suite": SUITE_DATASET_SPEC
        })
        return datasets.MetricInfo(
            description="TODO",
            citation=_CITATION,
            inputs_description="TODO",
            features=features,
        )

    def _compute(self, suite, model_id, batch_size: int = 16,
                 add_start_token=True, device=None
                 ) -> SyntaxGymMetricResult:
        if device is not None:
            assert device in ["gpu", "cpu", "cuda"]
            if device == "gpu":
                device = "cuda"
        else:
            device = "cuda" if torch.cuda.is_available() else "cpu"

        model = AutoModelForCausalLM.from_pretrained(model_id)
        model = model.to(device)
        model.eval()

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        # TODO copy from perplexity metric
        tokenizer.pad_token = tokenizer.eos_token

        results = {"prediction_results": [], "region_totals": []}
        # TODO batch all items together
        for item in logging.tqdm(suite):
            result_single = self._compute_single(item, tokenizer, model, device)

            for k in ["prediction_results", "region_totals"]:
                results[k].append(result_single[k])

        return results


    def _compute_single(self, item, tokenizer, model, device):
        tokenized = tokenizer(item["conditions"]["content"],
                              padding=True,
                              return_tensors="pt",
                              return_offsets_mapping=True).to(device)

        # input_ids: B * T
        input_ids = tokenized["input_ids"]
        assert input_ids.ndim == 2

        # Compute sentence level surprisals.
        with torch.no_grad():
            # Pre-softmax predictive distribution B * T * V
            logits = model(input_ids).logits
            surprisals = -logits.log_softmax(dim=2) / np.log(2)

        # surprisals: B * T * V
        assert surprisals.ndim == 3

        # Get surprisals of expected words.
        surps_shifted = surprisals[:, :-1, :]
        expected_ids = input_ids[:, 1:]

        # TODO: check this logic
        tt = expected_ids.unsqueeze(2)
        surprisals = torch.gather(surps_shifted, 2, expected_ids.unsqueeze(2)) \
            .squeeze(2)
        # This is the original, which works but not with multiple axes in expected_ids
        # surprisals = surps_shifted[range(surps_shifted.shape[0]), expected_ids]

        # surprisals is now B * (T - 1)

        #### aggregate
        condition_names = item["conditions"]["condition_name"]
        region_totals = {condition_name: defaultdict(float)
                         for condition_name in condition_names}
        region2tokens = self.compute_region_token_mapping(
            item, input_ids, tokenized["offset_mapping"])

        for i, (i_cond, i_inputs) in enumerate(zip(condition_names, input_ids)):
            for region_number, region_tokens in region2tokens[i_cond].items():
                for token in region_tokens:
                    if token < surprisals.shape[1]:
                        region_totals[i_cond][region_number] += surprisals[i, token]
                    else:
                        # TODO don't think this is an issue, just should clean
                        # up the aggregation output
                        assert token == surprisals.shape[1], \
                            "%s %s" % (token, surprisals.shape[1])

        region_totals = {(condition_name, region_number): float(total)
                         for condition_name, totals in region_totals.items()
                         for region_number, total in totals.items()}

        results = {
            "prediction_results": [
                Prediction(i, formula, "sum").formula(region_totals)
                for i, formula in enumerate(item["predictions"])
            ],

            "region_totals": region_totals
        }
        return results

    def get_region_edges(self, item, condition_idx):
        """
        Get left edge of each region as a character index.
        """
        # NB this is coupled with `condition_to_string` logic of course

        regions = item["conditions"]["regions"][condition_idx]

        idx = 0
        ret = []
        for r_idx, region_content in enumerate(regions["content"]):
            ret.append(idx)

            region_size = len(region_content)
            if region_content.strip() != "" and r_idx != 0 and not region_content.startswith(","):
                # Add joining space
                region_size += 1

            idx += region_size

        return ret

    def compute_region_token_mapping(self, item, input_ids: torch.LongTensor,
                                     offset_mapping: List[Tuple[int, int]]
                                     ) -> Dict[str, Dict[int, List[int]]]:
        # input_ids: B * T
        # offset_mapping: B * T * 2
        # assumes batch is sorted according to item's condition_name order

        condition_names = item["conditions"]["condition_name"]
        region2tokens = {cond: defaultdict(list) for cond in condition_names}

        max_long = torch.iinfo(torch.int64).max

        input_ids = input_ids.detach()
        for i_cond, (i_tokens, i_offsets) in enumerate(zip(input_ids, offset_mapping)):
            region_edges = self.get_region_edges(item, i_cond)

            t_cursor, r_cursor = 0, 0
            while t_cursor < i_tokens.shape[0]:
                # token = i_tokens[t_cursor]
                token_char_start, token_char_end = i_offsets[t_cursor]

                region_start = region_edges[r_cursor]
                region_end = region_edges[r_cursor + 1] \
                    if r_cursor + 1 < len(region_edges) else max_long

                # NB region boundaries are left edges, hence the >= here.
                if token_char_start >= region_end:
                    r_cursor += 1
                    continue

                region2tokens[condition_names[i_cond]][r_cursor + 1].append(t_cursor)
                t_cursor += 1

        return region2tokens