|
from typing import Union, Optional as TOptional, List as TList |
|
|
|
|
|
from pyparsing import * |
|
import numpy as np |
|
|
|
METRICS = { |
|
'sum': sum, |
|
'mean': np.mean, |
|
'median': np.median, |
|
'range': np.ptp, |
|
'max': max, |
|
'min': min |
|
} |
|
|
|
|
|
|
|
ParserElement.enablePackrat() |
|
|
|
|
|
EQUALITY_RTOL = 1e-5 |
|
EQUALITY_ATOL = 1e-3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
lpar = Suppress("(") |
|
rpar = Suppress(")") |
|
region = lpar + (Word(nums) | "*") + Suppress(";%") + Word(alphanums + "_-") + Suppress("%") + rpar |
|
literal_float = pyparsing_common.number |
|
|
|
class Region(object): |
|
def __init__(self, tokens): |
|
self.region_number = tokens[0] |
|
self.condition_name = tokens[1] |
|
|
|
def __str__(self): |
|
return "(%s;%%%s%%)" % (self.region_number, self.condition_name) |
|
|
|
def __repr__(self): |
|
return "Region(%s,%s)" % (self.condition_name, self.region_number) |
|
|
|
def __call__(self, surprisal_dict): |
|
if self.region_number == "*": |
|
return sum(value for (condition, region), value in surprisal_dict.items() |
|
if condition == self.condition_name) |
|
|
|
return surprisal_dict[self.condition_name, int(self.region_number)] |
|
|
|
class LiteralFloat(object): |
|
def __init__(self, tokens): |
|
self.value = float(tokens[0]) |
|
|
|
def __str__(self): |
|
return "%f" % (self.value,) |
|
|
|
def __repr__(self): |
|
return "LiteralFloat(%f)" % (self.value,) |
|
|
|
def __call__(self, surprisal_dict): |
|
return self.value |
|
|
|
class BinaryOp(object): |
|
operators: TOptional[TList[str]] |
|
|
|
def __init__(self, tokens): |
|
self.operator = tokens[0][1] |
|
if self.operators is not None and self.operator not in self.operators: |
|
raise ValueError("Invalid %s operator %s" % (self.__class__.__name__, |
|
self.operator)) |
|
self.operands = [tokens[0][0], tokens[0][2]] |
|
|
|
def __str__(self): |
|
return "(%s %s %s)" % (self.operands[0], self.operator, self.operands[1]) |
|
|
|
def __repr__(self): |
|
return "%s(%s)(%s)" % (self.__class__.__name__, self.operator, ",".join(map(repr, self.operands))) |
|
|
|
def __call__(self, surprisal_dict): |
|
op_vals = [op(surprisal_dict) for op in self.operands] |
|
return self._evaluate(op_vals, surprisal_dict) |
|
|
|
def _evaluate(self, evaluated_operands, surprisal_dict): |
|
raise NotImplementedError() |
|
|
|
class BoolOp(BinaryOp): |
|
operators = ["&", "|"] |
|
def _evaluate(self, op_vals, surprisal_dict): |
|
if self.operator == "&": |
|
return op_vals[0] and op_vals[1] |
|
elif self.operator == "|": |
|
return op_vals[0] or op_vals[1] |
|
|
|
class FloatOp(BinaryOp): |
|
operators = ["-", "+"] |
|
def _evaluate(self, op_vals, surprisal_dict): |
|
if self.operator == "-": |
|
return op_vals[0] - op_vals[1] |
|
elif self.operator == "+": |
|
return op_vals[0] + op_vals[1] |
|
|
|
class ComparatorOp(BinaryOp): |
|
operators = ["<", ">", "="] |
|
def _evaluate(self, op_vals, surprisal_dict): |
|
if self.operator == "<": |
|
return op_vals[0] < op_vals[1] |
|
elif self.operator == ">": |
|
return op_vals[0] > op_vals[1] |
|
elif self.operator == "=": |
|
return np.isclose(op_vals[0], op_vals[1], |
|
rtol=EQUALITY_RTOL, |
|
atol=EQUALITY_ATOL) |
|
|
|
def Chain(op_cls, left_assoc=True): |
|
def chainer(tokens): |
|
""" |
|
Create a binary tree of BinaryOps from the given repeated application |
|
of the op. |
|
""" |
|
operators = tokens[0][1::2] |
|
args = tokens[0][0::2] |
|
if not left_assoc: |
|
raise NotImplementedError |
|
|
|
arg1 = args.pop(0) |
|
while len(args) > 0: |
|
operator = operators.pop(0) |
|
arg2 = args.pop(0) |
|
arg1 = op_cls([[arg1, operator, arg2]]) |
|
|
|
return arg1 |
|
|
|
return chainer |
|
|
|
atom = region.setParseAction(Region) | literal_float.setParseAction(LiteralFloat) |
|
|
|
prediction_expr = infixNotation( |
|
atom, |
|
[ |
|
(oneOf("- +"), 2, opAssoc.LEFT, Chain(FloatOp)), |
|
(oneOf("< > ="), 2, opAssoc.LEFT, ComparatorOp), |
|
(oneOf("& |"), 2, opAssoc.LEFT, Chain(BoolOp)), |
|
], |
|
lpar=lpar, rpar=rpar |
|
) |
|
|
|
|
|
class Prediction(object): |
|
""" |
|
Predictions state expected relations between language model surprisal |
|
measures in different regions and conditions of a test suite. For more |
|
information, see :ref:`architecture`. |
|
""" |
|
|
|
def __init__(self, idx: int, formula: Union[str, BinaryOp], metric: str): |
|
""" |
|
Args: |
|
idx: A unique prediction ID. This is only relevant for |
|
serialization. |
|
formula: A string representation of the prediction formula, or an |
|
already parsed formula. For more information, see |
|
:ref:`architecture`. |
|
metric: Metric for aggregating surprisals within regions. |
|
""" |
|
if isinstance(formula, str): |
|
try: |
|
formula = prediction_expr.parseString(formula, parseAll=True)[0] |
|
except ParseException as e: |
|
raise ValueError("Invalid formula expression %r" % (formula,)) from e |
|
|
|
self.idx = idx |
|
self.formula = formula |
|
|
|
if metric not in METRICS.keys(): |
|
raise ValueError("Unknown metric %s. Supported metrics: %s" % |
|
(metric, " ".join(METRICS.keys()))) |
|
self.metric = metric |
|
|
|
def __call__(self, item): |
|
""" |
|
Evaluate the prediction on the given item dict representation. For more |
|
information on item representations, see :ref:`suite_json`. |
|
""" |
|
|
|
surps = {(c["condition_name"], r["region_number"]): r["metric_value"][self.metric] |
|
for c in item["conditions"] |
|
for r in c["regions"]} |
|
return self.formula(surps) |
|
|
|
@classmethod |
|
def from_dict(cls, pred_dict, idx: int, metric: str): |
|
""" |
|
Parse from a prediction dictionary representation (see |
|
:ref:`suite_json`). |
|
""" |
|
if not pred_dict["type"] == "formula": |
|
raise ValueError("Unknown prediction type %s" % (pred_dict["type"],)) |
|
|
|
return cls(formula=pred_dict["formula"], idx=idx, metric=metric) |
|
|
|
@property |
|
def referenced_regions(self): |
|
""" |
|
Get a set of the regions referenced by this formula. |
|
Each item is a tuple of the form ``(condition_name, region_number)``. |
|
""" |
|
def traverse(x, acc): |
|
if isinstance(x, BinaryOp): |
|
for val in x.operands: |
|
traverse(val, acc) |
|
elif isinstance(x, Region): |
|
acc.add((x.condition_name, int(x.region_number))) |
|
|
|
return acc |
|
|
|
return traverse(self.formula, set()) |
|
|
|
def as_dict(self): |
|
""" |
|
Serialize as a prediction dictionary representation (see |
|
:ref:`suite_json`). |
|
""" |
|
return dict(type="formula", formula=str(self.formula)) |
|
|
|
def __str__(self): |
|
return "Prediction(%s)" % (self.formula,) |
|
__repr__ = __str__ |
|
|
|
def __hash__(self): |
|
return hash(self.formula) |
|
|
|
def __eq__(self, other): |
|
return isinstance(other, Prediction) and hash(self) == hash(other) |
|
|