# coding=utf-8 """ SyntaxGym dataset as used in Hu et al. (2020). """ from collections import defaultdict from copy import deepcopy import json from pathlib import Path import re from typing import List, Dict, Tuple from typing_extensions import TypedDict import datasets from datasets import logging import numpy as np import torch from transformers import AutoModelForCausalLM, AutoTokenizer _CITATION = """ @inproceedings{Hu:et-al:2020, author = {Hu, Jennifer and Gauthier, Jon and Qian, Peng and Wilcox, Ethan and Levy, Roger}, title = {A systematic assessment of syntactic generalization in neural language models}, booktitle = {Proceedings of the Association of Computational Linguistics}, year = {2020} } """ _DESCRIPTION = "" # TODO _PROJECT_URL = "https://syntaxgym.org" _DOWNLOAD_URL = "https://raw.githubusercontent.com/cpllab/syntactic-generalization/nextflow/test_suites/json/" def condition_to_string(cond): ret = " ".join([region["content"].lstrip() for region in cond["regions"] if region["content"].strip() != ""]) ret = re.sub(r"\s+([.,])", r"\1", ret) return ret class SyntaxGymSuiteConfig(datasets.BuilderConfig): def __init__(self, name, version=datasets.Version("1.0.0"), **kwargs): description = f"SyntaxGym test suite {name}.\n" + _DESCRIPTION super().__init__(name=name, description=description, version=version, **kwargs) class SyntaxGymAll2020SuitesConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__( name="all-2020", description="All SyntaxGym test suites from Hu et al. (2020).\n" + _DESCRIPTION) SUITE_DATASET_CONDITION_SPEC = { "condition_name": datasets.Value("string"), "content": datasets.Value("string"), "regions": datasets.Sequence({ "region_number": datasets.Value("int32"), "content": datasets.Value("string") }) } SUITE_DATASET_SPEC = { "suite_name": datasets.Value("string"), "item_number": datasets.Value("int32"), "conditions": datasets.Sequence(SUITE_DATASET_CONDITION_SPEC), "predictions": datasets.Sequence(datasets.Value("string")), } class SyntaxGym(datasets.GeneratorBasedBuilder): SUITES = [ "center_embed", "center_embed_mod", "cleft", "cleft_modifier", "fgd_hierarchy", "fgd_object", "fgd_pp", "fgd_subject", "mvrr", "mvrr_mod", "npi_orc_any", "npi_orc_ever", "npi_src_any", "npi_src_ever", "npz_ambig", "npz_ambig_mod", "npz_obj", "npz_obj_mod", "number_orc", "number_prep", "number_src", "reflexive_orc_fem", "reflexive_orc_masc", "reflexive_prep_fem", "reflexive_prep_masc", "reflexive_src_fem", "reflexive_src_masc", "subordination", "subordination_orc-orc", "subordination_pp-pp", "subordination_src-src", ] BUILDER_CONFIGS = \ [SyntaxGymSuiteConfig(suite_name) for suite_name in SUITES] + \ [SyntaxGymAll2020SuitesConfig()] DEFAULT_CONFIG_NAME = "all-2020" def _info(self): citation = "" # print(self.BUILDER_CONFIGS) # if self.config.meta["reference"]: # citation = f"Test suite citation: {self.meta['reference']}\n" citation += f"SyntaxGym citation:\n{_CITATION}" return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(SUITE_DATASET_SPEC), homepage=_PROJECT_URL, citation=citation, ) def _download_suite(self, name, dl_manager: datasets.DownloadManager): return dl_manager.download_and_extract(_DOWNLOAD_URL + f"{name}.json") def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: if isinstance(self.config, SyntaxGymAll2020SuitesConfig): paths = [self._download_suite(suite_name, dl_manager) for suite_name in self.SUITES] else: paths = [self._download_suite(self.config.name, dl_manager)] return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"paths": paths})] def _generate_examples(self, paths): for path in paths: with open(path, "r", encoding="utf-8") as f: suite_json = json.load(f) suite_name = suite_json["meta"]["name"] predictions = [p["formula"] for p in suite_json["predictions"]] for item in suite_json["items"]: # Convert to sentence input. for cond in item["conditions"]: cond["content"] = condition_to_string(cond) item["suite_name"] = suite_name item["predictions"] = predictions yield f"{suite_name}/{item['item_number']}", item