system HF staff commited on
Commit
9a221b5
·
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

Files changed (4) hide show
  1. .gitattributes +27 -0
  2. dataset_infos.json +1 -0
  3. dummy/0.1.0/dummy_data.zip +3 -0
  4. squad_it.py +109 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "SQuAD-it is derived from the SQuAD dataset and it is obtained through semi-automatic translation of the SQuAD dataset \ninto Italian. It represents a large-scale dataset for open question answering processes on factoid questions in Italian.\n The dataset contains more than 60,000 question/answer pairs derived from the original English dataset. The dataset is \n split into training and test sets to support the replicability of the benchmarking of QA systems:\n", "citation": "@InProceedings{10.1007/978-3-030-03840-3_29,\n\tauthor=\"Croce, Danilo and Zelenanska, Alexandra and Basili, Roberto\",\n\teditor=\"Ghidini, Chiara and Magnini, Bernardo and Passerini, Andrea and Traverso, Paolo\",\n\ttitle=\"Neural Learning for Question Answering in Italian\",\n\tbooktitle=\"AI*IA 2018 -- Advances in Artificial Intelligence\",\n\tyear=\"2018\",\n\tpublisher=\"Springer International Publishing\",\n\taddress=\"Cham\",\n\tpages=\"389--402\",\n\tisbn=\"978-3-030-03840-3\"\n}\n", "homepage": "https://github.com/crux82/squad-it", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "squad_it", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 7870374, "num_examples": 7609, "dataset_name": "squad_it"}, "train": {"name": "train", "num_bytes": 50925634, "num_examples": 54159, "dataset_name": "squad_it"}}, "download_checksums": {"https://github.com/crux82/squad-it/raw/master/SQuAD_it-train.json.gz": {"num_bytes": 7725286, "checksum": "75d4d2832961f7a0f76a43d7e919e56a880ccc55de434ec90ae82cd67bec5d25"}, "https://github.com/crux82/squad-it/raw/master/SQuAD_it-test.json.gz": {"num_bytes": 1051245, "checksum": "25986c617cc7d58e82e916755b8a5684e5efae69835332858a6534a304cd293c"}}, "download_size": 8776531, "dataset_size": 58796008, "size_in_bytes": 67572539}}
dummy/0.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:163fe17eb7f55a290dbf9623cc8c85ecd9c877828c261c9de88435319cc4b00f
3
+ size 2215
squad_it.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """TODO(squad_it): Add a description here."""
2
+
3
+ from __future__ import absolute_import, division, print_function
4
+
5
+ import json
6
+ import os
7
+
8
+ import datasets
9
+
10
+
11
+ # TODO(squad_it): BibTeX citation
12
+ _CITATION = """\
13
+ @InProceedings{10.1007/978-3-030-03840-3_29,
14
+ author={Croce, Danilo and Zelenanska, Alexandra and Basili, Roberto},
15
+ editor={Ghidini, Chiara and Magnini, Bernardo and Passerini, Andrea and Traverso, Paolo",
16
+ title={Neural Learning for Question Answering in Italian},
17
+ booktitle={AI*IA 2018 -- Advances in Artificial Intelligence},
18
+ year={2018},
19
+ publisher={Springer International Publishing},
20
+ address={Cham},
21
+ pages={389--402},
22
+ isbn={978-3-030-03840-3}
23
+ }
24
+ """
25
+
26
+ # TODO(squad_it):
27
+ _DESCRIPTION = """\
28
+ SQuAD-it is derived from the SQuAD dataset and it is obtained through semi-automatic translation of the SQuAD dataset
29
+ into Italian. It represents a large-scale dataset for open question answering processes on factoid questions in Italian.
30
+ The dataset contains more than 60,000 question/answer pairs derived from the original English dataset. The dataset is
31
+ split into training and test sets to support the replicability of the benchmarking of QA systems:
32
+ """
33
+ _URL = "https://github.com/crux82/squad-it/raw/master"
34
+ _TRAIN_FILE = "SQuAD_it-train.json.gz"
35
+ _TEST_FILE = "SQuAD_it-test.json.gz"
36
+
37
+
38
+ class SquadIt(datasets.GeneratorBasedBuilder):
39
+ """TODO(squad_it): Short description of my dataset."""
40
+
41
+ # TODO(squad_it): Set up version.
42
+ VERSION = datasets.Version("0.1.0")
43
+
44
+ def _info(self):
45
+ # TODO(squad_it): Specifies the datasets.DatasetInfo object
46
+ return datasets.DatasetInfo(
47
+ # This is the description that will appear on the datasets page.
48
+ description=_DESCRIPTION,
49
+ # datasets.features.FeatureConnectors
50
+ features=datasets.Features(
51
+ {
52
+ "id": datasets.Value("string"),
53
+ "context": datasets.Value("string"),
54
+ "question": datasets.Value("string"),
55
+ "answers": datasets.features.Sequence(
56
+ {
57
+ "text": datasets.Value("string"),
58
+ "answer_start": datasets.Value("int32"),
59
+ }
60
+ ),
61
+ # These are the features of your dataset like images, labels ...
62
+ }
63
+ ),
64
+ # If there's a common (input, target) tuple from the features,
65
+ # specify them here. They'll be used if as_supervised=True in
66
+ # builder.as_dataset.
67
+ supervised_keys=None,
68
+ # Homepage of the dataset for documentation
69
+ homepage="https://github.com/crux82/squad-it",
70
+ citation=_CITATION,
71
+ )
72
+
73
+ def _split_generators(self, dl_manager):
74
+ """Returns SplitGenerators."""
75
+ # TODO(squad_it): Downloads the data and defines the splits
76
+ # dl_manager is a datasets.download.DownloadManager that can be used to
77
+ # download and extract URLs
78
+ urls_to_download = {"train": os.path.join(_URL, _TRAIN_FILE), "test": os.path.join(_URL, _TEST_FILE)}
79
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
80
+
81
+ return [
82
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
83
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
84
+ ]
85
+
86
+ def _generate_examples(self, filepath):
87
+ """Yields examples."""
88
+ # TODO(squad_it): Yields (key, example) tuples from the dataset
89
+ with open(filepath, encoding="utf-8") as f:
90
+ data = json.load(f)
91
+ for example in data["data"]:
92
+ for paragraph in example["paragraphs"]:
93
+ context = paragraph["context"].strip()
94
+ for qa in paragraph["qas"]:
95
+ question = qa["question"].strip()
96
+ id_ = qa["id"]
97
+
98
+ answer_starts = [answer["answer_start"] for answer in qa["answers"]]
99
+ answers = [answer["text"].strip() for answer in qa["answers"]]
100
+
101
+ yield id_, {
102
+ "context": context,
103
+ "question": question,
104
+ "id": id_,
105
+ "answers": {
106
+ "answer_start": answer_starts,
107
+ "text": answers,
108
+ },
109
+ }