File size: 62,445 Bytes
a23ef1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""
This file contains specific functions for computing losses on the RPN
file
"""
import torch
from torch import nn
from torch.nn import functional as F
from ..balanced_positive_negative_sampler import BalancedPositiveNegativeSampler
from ..utils import cat, concat_box_prediction_layers
from maskrcnn_benchmark.layers import smooth_l1_loss
from maskrcnn_benchmark.modeling.matcher import Matcher
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.layers import SigmoidFocalLoss, IOULoss, TokenSigmoidFocalLoss
from maskrcnn_benchmark.utils.comm import get_world_size, reduce_sum
from maskrcnn_benchmark.utils.amp import custom_fwd, custom_bwd
from maskrcnn_benchmark.utils.shallow_contrastive_loss_helper import *
from transformers import AutoTokenizer
INF = 1e8
class RPNLossComputation(object):
"""
This class computes the RPN loss.
"""
def __init__(self, proposal_matcher, fg_bg_sampler, box_coder):
"""
Arguments:
proposal_matcher (Matcher)
fg_bg_sampler (BalancedPositiveNegativeSampler)
box_coder (BoxCoder)
"""
# self.target_preparator = target_preparator
self.proposal_matcher = proposal_matcher
self.fg_bg_sampler = fg_bg_sampler
self.box_coder = box_coder
def match_targets_to_anchors(self, anchor, target):
match_quality_matrix = boxlist_iou(target, anchor)
matched_idxs = self.proposal_matcher(match_quality_matrix)
# RPN doesn't need any fields from target
# for creating the labels, so clear them all
target = target.copy_with_fields([])
# get the targets corresponding GT for each anchor
# NB: need to clamp the indices because we can have a single
# GT in the image, and matched_idxs can be -2, which goes
# out of bounds
if len(target):
matched_targets = target[matched_idxs.clamp(min=0)]
else:
matched_targets = target
matched_targets.add_field("matched_idxs", matched_idxs)
return matched_targets
def prepare_targets(self, anchors, targets):
labels = []
regression_targets = []
for anchors_per_image, targets_per_image in zip(anchors, targets):
matched_targets = self.match_targets_to_anchors(
anchors_per_image, targets_per_image
)
matched_idxs = matched_targets.get_field("matched_idxs")
labels_per_image = matched_idxs >= 0
labels_per_image = labels_per_image.to(dtype=torch.float32)
# discard anchors that go out of the boundaries of the image
labels_per_image[~anchors_per_image.get_field("visibility")] = -1
# discard indices that are between thresholds
inds_to_discard = matched_idxs == Matcher.BETWEEN_THRESHOLDS
labels_per_image[inds_to_discard] = -1
# compute regression targets
if not matched_targets.bbox.shape[0]:
zeros = torch.zeros_like(labels_per_image)
regression_targets_per_image = torch.stack((zeros, zeros, zeros, zeros), dim=1)
else:
regression_targets_per_image = self.box_coder.encode(matched_targets.bbox, anchors_per_image.bbox)
labels.append(labels_per_image)
regression_targets.append(regression_targets_per_image)
return labels, regression_targets
@custom_fwd(cast_inputs=torch.float32)
def __call__(self, anchors, objectness, box_regression, targets):
"""
Arguments:
anchors (list[BoxList])
objectness (list[Tensor])
box_regression (list[Tensor])
targets (list[BoxList])
Returns:
objectness_loss (Tensor)
box_loss (Tensor
"""
anchors = [cat_boxlist(anchors_per_image) for anchors_per_image in anchors]
labels, regression_targets = self.prepare_targets(anchors, targets)
sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
sampled_pos_inds = torch.nonzero(torch.cat(sampled_pos_inds, dim=0)).squeeze(1)
sampled_neg_inds = torch.nonzero(torch.cat(sampled_neg_inds, dim=0)).squeeze(1)
sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0)
objectness_flattened = []
box_regression_flattened = []
# for each feature level, permute the outputs to make them be in the
# same format as the labels. Note that the labels are computed for
# all feature levels concatenated, so we keep the same representation
# for the objectness and the box_regression
for objectness_per_level, box_regression_per_level in zip(
objectness, box_regression
):
N, A, H, W = objectness_per_level.shape
objectness_per_level = objectness_per_level.permute(0, 2, 3, 1).reshape(
N, -1
)
box_regression_per_level = box_regression_per_level.view(N, -1, 4, H, W)
box_regression_per_level = box_regression_per_level.permute(0, 3, 4, 1, 2)
box_regression_per_level = box_regression_per_level.reshape(N, -1, 4)
objectness_flattened.append(objectness_per_level)
box_regression_flattened.append(box_regression_per_level)
# concatenate on the first dimension (representing the feature levels), to
# take into account the way the labels were generated (with all feature maps
# being concatenated as well)
objectness = cat(objectness_flattened, dim=1).reshape(-1)
box_regression = cat(box_regression_flattened, dim=1).reshape(-1, 4)
labels = torch.cat(labels, dim=0)
regression_targets = torch.cat(regression_targets, dim=0)
box_loss = smooth_l1_loss(
box_regression[sampled_pos_inds],
regression_targets[sampled_pos_inds],
beta=1.0 / 9,
size_average=False,
) / (sampled_inds.numel())
objectness_loss = F.binary_cross_entropy_with_logits(
objectness[sampled_inds], labels[sampled_inds]
)
return objectness_loss, box_loss
class FocalLossComputation(object):
"""
This class computes the RetinaNet loss.
"""
def __init__(self, proposal_matcher, box_coder,
generate_labels_func,
sigmoid_focal_loss,
bbox_reg_beta=0.11,
regress_norm=1.0):
"""
Arguments:
proposal_matcher (Matcher)
box_coder (BoxCoder)
"""
self.proposal_matcher = proposal_matcher
self.box_coder = box_coder
self.box_cls_loss_func = sigmoid_focal_loss
self.bbox_reg_beta = bbox_reg_beta
self.copied_fields = ['labels']
self.generate_labels_func = generate_labels_func
self.discard_cases = ['between_thresholds']
self.regress_norm = regress_norm
def match_targets_to_anchors(self, anchor, target, copied_fields=[]):
match_quality_matrix = boxlist_iou(target, anchor)
matched_idxs = self.proposal_matcher(match_quality_matrix)
# RPN doesn't need any fields from target
# for creating the labels, so clear them all
target = target.copy_with_fields(copied_fields)
# get the targets corresponding GT for each anchor
# NB: need to clamp the indices because we can have a single
# GT in the image, and matched_idxs can be -2, which goes
# out of bounds
matched_targets = target[matched_idxs.clamp(min=0)]
matched_targets.add_field("matched_idxs", matched_idxs)
return matched_targets
def prepare_targets(self, anchors, targets):
labels = []
regression_targets = []
for anchors_per_image, targets_per_image in zip(anchors, targets):
matched_targets = self.match_targets_to_anchors(
anchors_per_image, targets_per_image, self.copied_fields
)
matched_idxs = matched_targets.get_field("matched_idxs")
labels_per_image = self.generate_labels_func(matched_targets)
labels_per_image = labels_per_image.to(dtype=torch.float32)
# Background (negative examples)
bg_indices = matched_idxs == Matcher.BELOW_LOW_THRESHOLD
labels_per_image[bg_indices] = 0
# discard anchors that go out of the boundaries of the image
if "not_visibility" in self.discard_cases:
labels_per_image[~anchors_per_image.get_field("visibility")] = -1
# discard indices that are between thresholds
if "between_thresholds" in self.discard_cases:
inds_to_discard = matched_idxs == Matcher.BETWEEN_THRESHOLDS
labels_per_image[inds_to_discard] = -1
# compute regression targets
regression_targets_per_image = self.box_coder.encode(
matched_targets.bbox, anchors_per_image.bbox
)
labels.append(labels_per_image)
regression_targets.append(regression_targets_per_image)
return labels, regression_targets
@custom_fwd(cast_inputs=torch.float32)
def __call__(self, anchors, box_cls, box_regression, targets):
"""
Arguments:
anchors (list[BoxList])
box_cls (list[Tensor])
box_regression (list[Tensor])
targets (list[BoxList])
Returns:
retinanet_cls_loss (Tensor)
retinanet_regression_loss (Tensor
"""
anchors = [cat_boxlist(anchors_per_image) for anchors_per_image in anchors]
labels, regression_targets = self.prepare_targets(anchors, targets)
N = len(labels)
box_cls, box_regression = \
concat_box_prediction_layers(box_cls, box_regression)
labels = torch.cat(labels, dim=0)
regression_targets = torch.cat(regression_targets, dim=0)
pos_inds = torch.nonzero(labels > 0).squeeze(1)
retinanet_regression_loss = smooth_l1_loss(
box_regression[pos_inds],
regression_targets[pos_inds],
beta=self.bbox_reg_beta,
size_average=False,
) / (max(1, pos_inds.numel() * self.regress_norm))
labels = labels.int()
retinanet_cls_loss = self.box_cls_loss_func(
box_cls,
labels
) / (pos_inds.numel() + N)
return retinanet_cls_loss, retinanet_regression_loss
class FCOSLossComputation(object):
"""
This class computes the FCOS losses.
"""
def __init__(self, cfg):
self.cls_loss_func = SigmoidFocalLoss(
cfg.MODEL.FOCAL.LOSS_GAMMA,
cfg.MODEL.FOCAL.LOSS_ALPHA
)
self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES
self.center_sampling_radius = cfg.MODEL.FCOS.CENTER_SAMPLING_RADIUS
self.iou_loss_type = cfg.MODEL.FCOS.IOU_LOSS_TYPE
self.norm_reg_targets = cfg.MODEL.FCOS.NORM_REG_TARGETS
self.use_gt_center = cfg.MODEL.FCOS.USE_GT_CENTER
# we make use of IOU Loss for bounding boxes regression,
# but we found that L1 in log scale can yield a similar performance
self.box_reg_loss_func = IOULoss(self.iou_loss_type)
self.centerness_loss_func = torch.nn.BCEWithLogitsLoss(reduction="sum")
def get_sample_region(self, gt, strides, num_points_per, gt_xs, gt_ys, radius=1.0):
'''
This code is from
https://github.com/yqyao/FCOS_PLUS/blob/0d20ba34ccc316650d8c30febb2eb40cb6eaae37/
maskrcnn_benchmark/modeling/rpn/fcos/loss.py#L42
'''
num_gts = gt.shape[0]
K = len(gt_xs)
gt = gt[None].expand(K, num_gts, 4)
center_x = (gt[..., 0] + gt[..., 2]) / 2
center_y = (gt[..., 1] + gt[..., 3]) / 2
center_gt = gt.new_zeros(gt.shape)
# no gt
if center_x[..., 0].sum() == 0:
return gt_xs.new_zeros(gt_xs.shape, dtype=torch.uint8)
beg = 0
for level, n_p in enumerate(num_points_per):
end = beg + n_p
stride = strides[level] * radius
xmin = center_x[beg:end] - stride
ymin = center_y[beg:end] - stride
xmax = center_x[beg:end] + stride
ymax = center_y[beg:end] + stride
# limit sample region in gt
center_gt[beg:end, :, 0] = torch.where(
xmin > gt[beg:end, :, 0], xmin, gt[beg:end, :, 0]
)
center_gt[beg:end, :, 1] = torch.where(
ymin > gt[beg:end, :, 1], ymin, gt[beg:end, :, 1]
)
center_gt[beg:end, :, 2] = torch.where(
xmax > gt[beg:end, :, 2],
gt[beg:end, :, 2], xmax
)
center_gt[beg:end, :, 3] = torch.where(
ymax > gt[beg:end, :, 3],
gt[beg:end, :, 3], ymax
)
beg = end
left = gt_xs[:, None] - center_gt[..., 0]
right = center_gt[..., 2] - gt_xs[:, None]
top = gt_ys[:, None] - center_gt[..., 1]
bottom = center_gt[..., 3] - gt_ys[:, None]
center_bbox = torch.stack((left, top, right, bottom), -1)
inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
return inside_gt_bbox_mask
def prepare_targets(self, points, targets):
object_sizes_of_interest = [
[-1, 64],
[64, 128],
[128, 256],
[256, 512],
[512, INF],
]
expanded_object_sizes_of_interest = []
for l, points_per_level in enumerate(points):
object_sizes_of_interest_per_level = \
points_per_level.new_tensor(object_sizes_of_interest[l])
expanded_object_sizes_of_interest.append(
object_sizes_of_interest_per_level[None].expand(len(points_per_level), -1)
)
expanded_object_sizes_of_interest = torch.cat(expanded_object_sizes_of_interest, dim=0)
num_points_per_level = [len(points_per_level) for points_per_level in points]
self.num_points_per_level = num_points_per_level
points_all_level = torch.cat(points, dim=0)
labels, reg_targets = self.compute_targets_for_locations(
points_all_level, targets, expanded_object_sizes_of_interest
)
for i in range(len(labels)):
labels[i] = torch.split(labels[i], num_points_per_level, dim=0)
reg_targets[i] = torch.split(reg_targets[i], num_points_per_level, dim=0)
labels_level_first = []
reg_targets_level_first = []
for level in range(len(points)):
labels_level_first.append(
torch.cat([labels_per_im[level] for labels_per_im in labels], dim=0)
)
reg_targets_per_level = torch.cat([
reg_targets_per_im[level]
for reg_targets_per_im in reg_targets
], dim=0)
if self.norm_reg_targets:
reg_targets_per_level = reg_targets_per_level / self.fpn_strides[level]
reg_targets_level_first.append(reg_targets_per_level)
return labels_level_first, reg_targets_level_first
def compute_targets_for_locations(self, locations, targets, object_sizes_of_interest):
labels = []
reg_targets = []
xs, ys = locations[:, 0], locations[:, 1]
for im_i in range(len(targets)):
targets_per_im = targets[im_i]
assert targets_per_im.mode == "xyxy"
if self.use_gt_center:
center = targets_per_im.get_field("cbox")
bboxes = center.bbox
area = center.area()
else:
bboxes = targets_per_im.bbox
area = targets_per_im.area()
labels_per_im = targets_per_im.get_field("labels")
l = xs[:, None] - bboxes[:, 0][None]
t = ys[:, None] - bboxes[:, 1][None]
r = bboxes[:, 2][None] - xs[:, None]
b = bboxes[:, 3][None] - ys[:, None]
reg_targets_per_im = torch.stack([l, t, r, b], dim=2)
if self.center_sampling_radius > 0:
is_in_boxes = self.get_sample_region(
bboxes,
self.fpn_strides,
self.num_points_per_level,
xs, ys,
radius=self.center_sampling_radius
)
else:
# no center sampling, it will use all the locations within a ground-truth box
is_in_boxes = reg_targets_per_im.min(dim=2)[0] > 0
max_reg_targets_per_im = reg_targets_per_im.max(dim=2)[0]
# limit the regression range for each location
is_cared_in_the_level = \
(max_reg_targets_per_im >= object_sizes_of_interest[:, [0]]) & \
(max_reg_targets_per_im <= object_sizes_of_interest[:, [1]])
locations_to_gt_area = area[None].repeat(len(locations), 1)
locations_to_gt_area[is_in_boxes == 0] = INF
locations_to_gt_area[is_cared_in_the_level == 0] = INF
# if there are still more than one objects for a location,
# we choose the one with minimal area
locations_to_min_area, locations_to_gt_inds = locations_to_gt_area.min(dim=1)
reg_targets_per_im = reg_targets_per_im[range(len(locations)), locations_to_gt_inds]
labels_per_im = labels_per_im[locations_to_gt_inds]
labels_per_im[locations_to_min_area == INF] = 0
labels.append(labels_per_im)
reg_targets.append(reg_targets_per_im)
return labels, reg_targets
def compute_centerness_targets(self, reg_targets):
left_right = reg_targets[:, [0, 2]]
top_bottom = reg_targets[:, [1, 3]]
centerness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * \
(top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
return torch.sqrt(centerness)
@custom_fwd(cast_inputs=torch.float32)
def __call__(self, locations, box_cls, box_regression, centerness, targets):
"""
Arguments:
locations (list[BoxList])
box_cls (list[Tensor])
box_regression (list[Tensor])
centerness (list[Tensor])
targets (list[BoxList])
Returns:
cls_loss (Tensor)
reg_loss (Tensor)
centerness_loss (Tensor)
"""
N = box_cls[0].size(0)
num_classes = box_cls[0].size(1)
labels, reg_targets = self.prepare_targets(locations, targets)
box_cls_flatten = []
box_regression_flatten = []
centerness_flatten = []
labels_flatten = []
reg_targets_flatten = []
for l in range(len(labels)):
box_cls_flatten.append(box_cls[l].permute(0, 2, 3, 1).reshape(-1, num_classes))
box_regression_flatten.append(box_regression[l].permute(0, 2, 3, 1).reshape(-1, 4))
labels_flatten.append(labels[l].reshape(-1))
reg_targets_flatten.append(reg_targets[l].reshape(-1, 4))
centerness_flatten.append(centerness[l].reshape(-1))
box_cls_flatten = torch.cat(box_cls_flatten, dim=0)
box_regression_flatten = torch.cat(box_regression_flatten, dim=0)
centerness_flatten = torch.cat(centerness_flatten, dim=0)
labels_flatten = torch.cat(labels_flatten, dim=0)
reg_targets_flatten = torch.cat(reg_targets_flatten, dim=0)
pos_inds = torch.nonzero(labels_flatten > 0).squeeze(1)
box_regression_flatten = box_regression_flatten[pos_inds]
reg_targets_flatten = reg_targets_flatten[pos_inds]
centerness_flatten = centerness_flatten[pos_inds]
cls_loss = self.cls_loss_func(
box_cls_flatten,
labels_flatten.int()
) / max(pos_inds.numel(), 1.0)
if pos_inds.numel() > 0:
centerness_targets = self.compute_centerness_targets(reg_targets_flatten)
reg_loss = self.box_reg_loss_func(
box_regression_flatten,
reg_targets_flatten,
centerness_targets
) / centerness_targets.sum()
centerness_loss = self.centerness_loss_func(
centerness_flatten,
centerness_targets
) / max(pos_inds.numel(), 1.0)
else:
reg_loss = box_regression_flatten.sum()
centerness_loss = centerness_flatten.sum()
return cls_loss, reg_loss, centerness_loss
# class ATSSLossComputation(object):
class ATSSLossComputation(torch.nn.Module):
def __init__(self, cfg, box_coder):
super(ATSSLossComputation, self).__init__()
self.cfg = cfg
self.cls_loss_func = SigmoidFocalLoss(cfg.MODEL.FOCAL.LOSS_GAMMA, cfg.MODEL.FOCAL.LOSS_ALPHA)
self.centerness_loss_func = torch.nn.BCEWithLogitsLoss(reduction="sum")
self.matcher = Matcher(cfg.MODEL.FOCAL.FG_IOU_THRESHOLD, cfg.MODEL.FOCAL.BG_IOU_THRESHOLD, True)
self.box_coder = box_coder
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS or self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS:
self.token_loss_func = TokenSigmoidFocalLoss(cfg.MODEL.DYHEAD.FUSE_CONFIG.TOKEN_ALPHA,
cfg.MODEL.DYHEAD.FUSE_CONFIG.TOKEN_GAMMA)
self.lang = cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE
# self.tokenizer = AutoTokenizer.from_pretrained(self.lang)
if self.cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
from transformers import CLIPTokenizerFast
# self.tokenizer = build_tokenizer(self.cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE)
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
print("Reuse token 'ðŁĴij</w>' (token_id = 49404) for mask token!")
self.tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
from_slow=True, mask_token='ðŁĴij</w>')
else:
self.tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
from_slow=True)
else:
self.tokenizer = AutoTokenizer.from_pretrained(self.lang)
# if use shallow contrastive loss
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS \
or self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS:
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS:
assert self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS == False
channels = cfg.MODEL.DYHEAD.CHANNELS
num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE
shallow_input_dim = channels * num_anchors
elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS:
assert self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS == False
shallow_input_dim = cfg.MODEL.SWINT.OUT_CHANNELS[-2]
shallow_log_scale = self.cfg.MODEL.DYHEAD.SHALLOW_LOG_SCALE
shallow_contrastive_hdim = cfg.MODEL.DYHEAD.FUSE_CONFIG.SHALLOW_CONTRASTIVE_HIDDEN_DIM
# self.shallow_contrastive_projection_image = nn.Conv2d(channels, num_anchors * shallow_contrastive_hdim,
# kernel_size=1)
self.shallow_contrastive_projection_image = nn.Linear(shallow_input_dim, shallow_contrastive_hdim,
bias=True)
self.shallow_contrastive_projection_text = nn.Linear(self.cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM,
shallow_contrastive_hdim, bias=True)
self.shallow_log_scale = nn.Parameter(torch.Tensor([shallow_log_scale]), requires_grad=True)
# (initialization) if use shallow contrastive loss
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS:
for modules in [self.shallow_contrastive_projection_image, self.shallow_contrastive_projection_text]:
for l in modules.modules():
if isinstance(l, nn.Conv2d):
torch.nn.init.normal_(l.weight, std=0.01)
torch.nn.init.constant_(l.bias, 0)
if isinstance(l, nn.Linear):
torch.nn.init.xavier_uniform_(l.weight)
l.bias.data.fill_(0)
def NllSoftMaxLoss(self, logits, target):
loss_ce = -target * logits.log_softmax(
-1) # basically, only the those positives with positive target_sim will have losses
return loss_ce
def ContrastiveAlignLoss(self, logits, positive_map):
positive_logits = -logits.masked_fill(~positive_map, 0)
negative_logits = logits # .masked_fill(positive_map, -1000000)
boxes_with_pos = positive_map.any(2)
pos_term = positive_logits.sum(2)
neg_term = negative_logits.logsumexp(2)
nb_pos = positive_map.sum(2) + 1e-6
box_to_token_loss = ((pos_term / nb_pos + neg_term)).masked_fill(~boxes_with_pos, 0).sum()
tokens_with_pos = positive_map.any(1)
pos_term = positive_logits.sum(1)
neg_term = negative_logits.logsumexp(1)
nb_pos = positive_map.sum(1) + 1e-6
tokens_to_boxes_loss = ((pos_term / nb_pos + neg_term)).masked_fill(~tokens_with_pos, 0).sum()
tot_loss = (box_to_token_loss + tokens_to_boxes_loss) / 2
return tot_loss
def GIoULoss(self, pred, target, anchor, weight=None):
pred_boxes = self.box_coder.decode(pred.view(-1, 4), anchor.view(-1, 4))
pred_x1 = pred_boxes[:, 0]
pred_y1 = pred_boxes[:, 1]
pred_x2 = pred_boxes[:, 2]
pred_y2 = pred_boxes[:, 3]
pred_x2 = torch.max(pred_x1, pred_x2)
pred_y2 = torch.max(pred_y1, pred_y2)
pred_area = (pred_x2 - pred_x1) * (pred_y2 - pred_y1)
gt_boxes = self.box_coder.decode(target.view(-1, 4), anchor.view(-1, 4))
target_x1 = gt_boxes[:, 0]
target_y1 = gt_boxes[:, 1]
target_x2 = gt_boxes[:, 2]
target_y2 = gt_boxes[:, 3]
target_area = (target_x2 - target_x1) * (target_y2 - target_y1)
x1_intersect = torch.max(pred_x1, target_x1)
y1_intersect = torch.max(pred_y1, target_y1)
x2_intersect = torch.min(pred_x2, target_x2)
y2_intersect = torch.min(pred_y2, target_y2)
area_intersect = torch.zeros(pred_x1.size()).to(pred)
mask = (y2_intersect > y1_intersect) * (x2_intersect > x1_intersect)
area_intersect[mask] = (x2_intersect[mask] - x1_intersect[mask]) * (y2_intersect[mask] - y1_intersect[mask])
x1_enclosing = torch.min(pred_x1, target_x1)
y1_enclosing = torch.min(pred_y1, target_y1)
x2_enclosing = torch.max(pred_x2, target_x2)
y2_enclosing = torch.max(pred_y2, target_y2)
area_enclosing = (x2_enclosing - x1_enclosing) * (y2_enclosing - y1_enclosing) + 1e-7
area_union = pred_area + target_area - area_intersect + 1e-7
ious = area_intersect / area_union
gious = ious - (area_enclosing - area_union) / area_enclosing
losses = 1 - gious
if weight is not None and weight.sum() > 0:
return (losses * weight).sum()
else:
assert losses.numel() != 0
return losses.sum()
def prepare_targets(self, targets, anchors, tokenized=None, positive_map=None, proj_tokens=None):
cls_labels = []
reg_targets = []
token_labels = []
map_labels = []
gold_box_od_labels = []
od_label_of_tokens_labels = []
positive_indices = []
offset = 0
for im_i in range(len(targets)):
targets_per_im = targets[im_i]
assert targets_per_im.mode == "xyxy"
# bboxes_per_im = targets_per_im.get_field("boxes")
bboxes_per_im = targets_per_im.bbox
labels_per_im = targets_per_im.get_field("labels")
num_gt = len(bboxes_per_im)
if positive_map is not None:
token_per_im = positive_map[offset:offset + num_gt, :]
offset += num_gt
# Recheck if the label matches with the positive map
# print(labels_per_im)
# print(token_per_im.nonzero())
# shallow contrastive
if "original_od_label" in targets_per_im.fields():
gold_box_od_label = targets_per_im.get_field("original_od_label")
if "positive_map_for_od_labels" in targets_per_im.fields():
od_label_of_token_per_im = targets_per_im.get_field("positive_map_for_od_labels")
# print(gold_box_od_label)
# print(od_label_of_token_per_im)
if positive_map is not None and proj_tokens is not None:
if "tokens_positive" in targets_per_im.fields():
cur_tokens = targets_per_im.get_field("tokens_positive")
else:
cur_tokens = targets_per_im.get_field("tokens")
map = torch.zeros((len(cur_tokens), proj_tokens.shape[1]), dtype=torch.bool)
for j, tok_list in enumerate(cur_tokens):
for (beg, end) in tok_list:
beg_pos = tokenized.char_to_token(im_i, beg)
end_pos = tokenized.char_to_token(im_i, end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(im_i, beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(im_i, beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(im_i, end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(im_i, end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
map[j, beg_pos: end_pos + 1].fill_(True)
anchors_per_im = cat_boxlist(anchors[im_i])
num_anchors_per_loc = len(self.cfg.MODEL.RPN.ASPECT_RATIOS) * self.cfg.MODEL.RPN.SCALES_PER_OCTAVE
num_anchors_per_level = [len(anchors_per_level.bbox) for anchors_per_level in anchors[im_i]]
ious = boxlist_iou(anchors_per_im, targets_per_im)
gt_cx = (bboxes_per_im[:, 2] + bboxes_per_im[:, 0]) / 2.0
gt_cy = (bboxes_per_im[:, 3] + bboxes_per_im[:, 1]) / 2.0
gt_points = torch.stack((gt_cx, gt_cy), dim=1)
anchors_cx_per_im = (anchors_per_im.bbox[:, 2] + anchors_per_im.bbox[:, 0]) / 2.0
anchors_cy_per_im = (anchors_per_im.bbox[:, 3] + anchors_per_im.bbox[:, 1]) / 2.0
anchor_points = torch.stack((anchors_cx_per_im, anchors_cy_per_im), dim=1)
distances = (anchor_points[:, None, :] - gt_points[None, :, :]).pow(2).sum(-1).sqrt()
# Selecting candidates based on the center distance between anchor box and object
candidate_idxs = []
star_idx = 0
for level, anchors_per_level in enumerate(anchors[im_i]):
end_idx = star_idx + num_anchors_per_level[level]
distances_per_level = distances[star_idx:end_idx, :]
topk = min(self.cfg.MODEL.ATSS.TOPK * num_anchors_per_loc, num_anchors_per_level[level])
_, topk_idxs_per_level = distances_per_level.topk(topk, dim=0, largest=False)
candidate_idxs.append(topk_idxs_per_level + star_idx)
star_idx = end_idx
candidate_idxs = torch.cat(candidate_idxs, dim=0)
# Using the sum of mean and standard deviation as the IoU threshold to select final positive samples
candidate_ious = ious[candidate_idxs, torch.arange(num_gt)]
iou_mean_per_gt = candidate_ious.mean(0)
iou_std_per_gt = candidate_ious.std(0)
iou_thresh_per_gt = iou_mean_per_gt + iou_std_per_gt
is_pos = candidate_ious >= iou_thresh_per_gt[None, :]
# Limiting the final positive samples’ center to object
anchor_num = anchors_cx_per_im.shape[0]
for ng in range(num_gt):
candidate_idxs[:, ng] += ng * anchor_num
e_anchors_cx = anchors_cx_per_im.view(1, -1).expand(num_gt, anchor_num).contiguous().view(-1)
e_anchors_cy = anchors_cy_per_im.view(1, -1).expand(num_gt, anchor_num).contiguous().view(-1)
candidate_idxs = candidate_idxs.view(-1)
l = e_anchors_cx[candidate_idxs].view(-1, num_gt) - bboxes_per_im[:, 0]
t = e_anchors_cy[candidate_idxs].view(-1, num_gt) - bboxes_per_im[:, 1]
r = bboxes_per_im[:, 2] - e_anchors_cx[candidate_idxs].view(-1, num_gt)
b = bboxes_per_im[:, 3] - e_anchors_cy[candidate_idxs].view(-1, num_gt)
is_in_gts = torch.stack([l, t, r, b], dim=1).min(dim=1)[0] > 0.01
is_pos = is_pos & is_in_gts
# if an anchor box is assigned to multiple gts, the one with the highest IoU will be selected.
ious_inf = torch.full_like(ious, -INF).t().contiguous().view(-1)
index = candidate_idxs.view(-1)[is_pos.view(-1)]
ious_inf[index] = ious.t().contiguous().view(-1)[index]
ious_inf = ious_inf.view(num_gt, -1).t()
anchors_to_gt_values, anchors_to_gt_indexs = ious_inf.max(dim=1)
# get positive anchors index from ATSS
positive_index = [i[0].item() for i in torch.nonzero(anchors_to_gt_indexs)]
cls_labels_per_im = labels_per_im[anchors_to_gt_indexs]
cls_labels_per_im[anchors_to_gt_values == -INF] = 0
if positive_map is not None:
token_labels_per_im = token_per_im[anchors_to_gt_indexs]
unmatched_labels = torch.zeros(token_labels_per_im.shape[1], device=token_labels_per_im.device)
# TODO: temporarially disable the [NoObj] token logic, and only restrict to binary loss
unmatched_labels[-1] = 1 # token: none object - > 256
token_labels_per_im[anchors_to_gt_values == -INF] = unmatched_labels
# move from cpu to gpu
token_labels_per_im = token_labels_per_im.to(cls_labels_per_im.device)
# print(token_labels_per_im[anchors_to_gt_values == -INF].shape)
# print(cls_labels_per_im[anchors_to_gt_values != -INF][0])
# print(token_labels_per_im[anchors_to_gt_values != -INF][0].nonzero())
if positive_map is not None and proj_tokens is not None:
map_labels_per_im = map[anchors_to_gt_indexs]
unmatched_labels = torch.zeros(map_labels_per_im.shape[1], dtype=torch.bool,
device=map_labels_per_im.device) # map: none False
map_labels_per_im[anchors_to_gt_values == -INF] = unmatched_labels
# move from cpu to gpu
map_labels_per_im = map_labels_per_im.to(cls_labels_per_im.device)
# print(map_labels_per_im[anchors_to_gt_values == -INF].shape)
# print(map_labels_per_im[anchors_to_gt_values != -INF][0])
if positive_map is not None and proj_tokens is not None:
gold_box_od_label_per_im = gold_box_od_label[anchors_to_gt_indexs]
gold_box_od_label_per_im[anchors_to_gt_values == -INF] = -100
# move from cpu to gpu
gold_box_od_label_per_im = gold_box_od_label_per_im.to(cls_labels_per_im.device)
# print(gold_box_od_label_per_im[anchors_to_gt_values != -INF])
matched_gts = bboxes_per_im[anchors_to_gt_indexs]
reg_targets_per_im = self.box_coder.encode(matched_gts, anchors_per_im.bbox)
cls_labels.append(cls_labels_per_im)
reg_targets.append(reg_targets_per_im)
if positive_map is not None:
token_labels.append(token_labels_per_im)
if positive_map is not None and proj_tokens is not None:
map_labels.append(map_labels_per_im)
gold_box_od_labels.append(gold_box_od_label_per_im)
od_label_of_tokens_labels.append(od_label_of_token_per_im)
positive_indices.append(positive_index)
# print([len(x) for x in positive_indices])
return cls_labels, reg_targets, token_labels, map_labels, gold_box_od_labels, od_label_of_tokens_labels, positive_indices
def compute_centerness_targets(self, reg_targets, anchors):
gts = self.box_coder.decode(reg_targets, anchors)
anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2
anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2
l = anchors_cx - gts[:, 0]
t = anchors_cy - gts[:, 1]
r = gts[:, 2] - anchors_cx
b = gts[:, 3] - anchors_cy
left_right = torch.stack([l, r], dim=1)
top_bottom = torch.stack([t, b], dim=1)
centerness = torch.sqrt((left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * \
(top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]))
assert not torch.isnan(centerness).any()
return centerness
@custom_fwd(cast_inputs=torch.float32)
def __call__(self, box_cls, box_regression, centerness, targets, anchors,
captions=None,
positive_map=None,
token_logits=None,
proj_tokens=None,
contrastive_logits=None,
dot_product_logits=None,
text_masks=None,
shallow_img_emb_feats=None
):
tokenized = None
if captions is not None:
# tokenized = self.tokenizer.batch_encode_plus(captions, padding="longest", return_tensors="pt")
if self.cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
tokenized = self.tokenizer.batch_encode_plus(captions,
max_length=self.cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN,
padding='max_length' if self.cfg.MODEL.LANGUAGE_BACKBONE.PAD_MAX else "longest",
return_tensors='pt',
truncation=True)
else:
tokenized = self.tokenizer.batch_encode_plus(captions, padding="longest", return_tensors="pt")
labels, reg_targets, token_labels, map_labels, gold_box_od_labels, od_label_of_tokens_labels, positive_indices = self.prepare_targets(targets, anchors,
tokenized,
positive_map,
proj_tokens
)
N = len(labels)
box_regression_flatten, box_cls_flatten, token_logits_stacked = concat_box_prediction_layers(
box_regression,
box_cls,
token_logits,
)
# contrastive logits
if positive_map is not None and contrastive_logits is not None:
contrastive_logits = torch.cat(contrastive_logits, dim=1)
# dot product soft token logits
if dot_product_logits is not None:
dot_product_logits = torch.cat(dot_product_logits, dim=1)
centerness_flatten = [ct.permute(0, 2, 3, 1).reshape(N, -1, 1) for ct in centerness]
centerness_flatten = torch.cat(centerness_flatten, dim=1).reshape(-1)
labels_flatten = torch.cat(labels, dim=0)
reg_targets_flatten = torch.cat(reg_targets, dim=0)
anchors_flatten = torch.cat([cat_boxlist(anchors_per_image).bbox for anchors_per_image in anchors], dim=0)
if positive_map is not None:
token_labels_stacked = torch.stack(token_labels, dim=0)
if positive_map is not None and proj_tokens is not None:
positive_map_box_to_self_text = None
shallow_positive_map = None
bs = proj_tokens.shape[0]
device = proj_tokens.device
# NOTE: 0. setup env
if dist.is_dist_avail_and_initialized():
world_size = dist.get_world_size()
rank = torch.distributed.get_rank()
else:
world_size = 1
rank = 0
if contrastive_logits is not None:
positive_map_box_to_self_text = torch.stack(map_labels, dim=0)
if shallow_img_emb_feats is not None:
'''
Ultimate:
N*B*(max_anchor_num) x N*B*T
Final Goal:
F = B x (max_anchor_num) x N*B*T
X: B x (max_anchor_num) od_labels : [0, 20, 30, ..]
Y: N*B*T: which denotes the od_label of every token
F[i,j] = A[i] == B[j]
'''
with torch.no_grad():
# NOTE: 1. get X (predicted_box_od_label), which the detection label of every predicted boxes
# predicted_box_od_label: B x A
# check memory limitation: prevent # of positive >= # of max_positive
new_positive_indices = []
# print([len(positive_index) for positive_index in positive_indices])
for positive_index in positive_indices:
if len(positive_index) >= self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SHALLOW_MAX_POSITIVE_ANCHORS:
import random
positive_index = sorted(random.sample(positive_index,
self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SHALLOW_MAX_POSITIVE_ANCHORS))
new_positive_indices.append(positive_index)
# print([len(positive_index) for positive_index in positive_indices])
max_len = max([len(positive_index) for positive_index in new_positive_indices])
max_anchor_num = max_len
if world_size > 1:
num_anchors = torch.tensor(max_len, device=positive_map.device)
num_anchors_full = [torch.zeros_like(num_anchors) for _ in range(world_size)]
torch.distributed.all_gather(num_anchors_full, num_anchors)
max_anchor_num = max([anchor.item() for anchor in num_anchors_full])
new_negative_pad_indices = []
# if not PAD_ZEROS, select random negative paddings
if not self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_ZERO_PADS:
for (positive_index, old_positive_index) in zip(new_positive_indices, positive_indices):
negative_index = [i for i in range(len(cat_boxlist(anchors[0]))) if i not in old_positive_index]
import random
negative_pad_index = sorted(random.sample(negative_index,
max_anchor_num - len(positive_index)))
new_negative_pad_indices.append(negative_pad_index)
predicted_box_od_label = []
for i in range(bs):
predicted_box_od_label.append(
pad_tensor_given_dim_length(gold_box_od_labels[i][new_positive_indices[i]],
dim=0,
length=max_anchor_num,
padding_value=-100,
batch_first=False
))
predicted_box_od_label = torch.stack(predicted_box_od_label, dim=0)
# if padding, need to create image masks to filter out the paddings
image_masks = None
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_ZERO_PADS:
image_masks = torch.zeros((bs, max_anchor_num), dtype=torch.long).to(text_masks.device)
for i in range(bs):
image_masks[i, :len(new_positive_indices[i])] = 1
# NOTE: 2. Get Y (od_label_of_tokens)
# od_label_of_tokens: N x B x T
od_label_of_tokens = torch.stack(od_label_of_tokens_labels, dim=0).long()
od_label_of_tokens = gather_tensors(od_label_of_tokens)
# NOTE: 3. get F
# F: B*A x N*B*T
mapping_predicted_box_to_all_text = predicted_box_od_label.view(-1).unsqueeze(
1) == od_label_of_tokens.view(-1).unsqueeze(0)
# NOTE: 4. we still need to calculate the mapping between predicted box to its corresponding text's mapping
# positive_map_box_to_self_text: B x A x T, leave this for vanilla contrastive alignment loss
positive_map_box_to_self_text = []
for i in range(bs):
positive_map_box_to_self_text.append(
pad_tensor_given_dim_length(map_labels[i][new_positive_indices[i]],
dim=0,
length=max_anchor_num,
padding_value=False,
batch_first=False
))
positive_map_box_to_self_text = torch.stack(positive_map_box_to_self_text, dim=0)
# change the corresponding place in our batch
for i in range(bs):
mapping_predicted_box_to_all_text[i * max_anchor_num: (i + 1) * max_anchor_num,
(rank * bs + i) * 256: (rank * bs + i + 1) * 256] = positive_map_box_to_self_text[i]
# NOTE: 5. communicate and get positive map
# mapping_predicted_box_to_all_text: N*B*A x N*B*T
mapping_predicted_box_to_all_text = gather_tensors(mapping_predicted_box_to_all_text).view(-1,
mapping_predicted_box_to_all_text.size(
-1))
shallow_positive_map = mapping_predicted_box_to_all_text # This is the true positive map
shallow_positive_map = shallow_positive_map.unsqueeze(0)
# Get text attention masks
text_attention_mask = torch.zeros((bs, 256), dtype=torch.long) # B x 256
for i in range(bs):
text_attention_mask[i, :len(text_masks[i])] = text_masks[i]
text_attention_mask = gather_tensors(
text_attention_mask.bool().to(device)) # N x B x 256
# if PAD_ZEROS, get image masks
if image_masks is not None:
image_attention_mask = torch.zeros((bs, max_anchor_num), dtype=torch.long) # B x max_anchor
for i in range(bs):
image_attention_mask[i, :len(image_masks[i])] = image_masks[i]
image_attention_mask = gather_tensors(
image_attention_mask.bool().to(device)) # N x B x max_anchor
# NOTE: 6. calculate shallow contrastive logits
shallow_proj_tokens = F.normalize(self.shallow_contrastive_projection_text(proj_tokens), p=2, dim=-1)
shallow_normalized_img_embs = []
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS:
# choice 1:use features from SWINT backbone layer (c4) before vl fusion
from maskrcnn_benchmark.layers.roi_align import ROIAlignV2
pooler = ROIAlignV2((1, 1), 1./16, 0)
# get positive features
for i in range(bs):
rois = convert_to_roi_format(cat_boxlist(anchors[i])[new_positive_indices[i]])
roi_feature = pooler(shallow_img_emb_feats[i].unsqueeze(0), rois)
roi_feature = roi_feature.squeeze(-1).squeeze(-1)
shallow_contrastive_proj_queries = self.shallow_contrastive_projection_image(roi_feature)
shallow_normalized_img_emb = F.normalize(shallow_contrastive_proj_queries, p=2, dim=-1)
if image_masks is not None:
# pad zeros
shallow_normalized_img_embs.append(
pad_tensor_given_dim_length(shallow_normalized_img_emb,
dim=0,
length=max_anchor_num,
padding_value=0.0,
batch_first=False
))
else:
# pad negatives
negative_rois = convert_to_roi_format(cat_boxlist(anchors[i])[new_negative_pad_indices[i]])
negative_roi_feature = pooler(shallow_img_emb_feats[i].unsqueeze(0), negative_rois)
negative_roi_feature = negative_roi_feature.squeeze(-1).squeeze(-1)
negative_shallow_contrastive_proj_queries = self.shallow_contrastive_projection_image(negative_roi_feature)
negative_shallow_normalized_img_emb = F.normalize(negative_shallow_contrastive_proj_queries,
p=2, dim=-1)
shallow_normalized_img_embs.append(
pad_random_negative_tensor_given_length(shallow_normalized_img_emb,
negative_shallow_normalized_img_emb,
length=max_anchor_num
)
)
elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS:
# choice 2:use features after FPN
shallow_img_embs = torch.cat(shallow_img_emb_feats, dim=1)
# get positive features
for i in range(bs):
shallow_contrastive_proj_queries = self.shallow_contrastive_projection_image(shallow_img_embs[i, new_positive_indices[i], :])
shallow_normalized_img_emb = F.normalize(shallow_contrastive_proj_queries, p=2, dim=-1)
if image_masks is not None:
# pad zeros
shallow_normalized_img_embs.append(
pad_tensor_given_dim_length(shallow_normalized_img_emb,
dim=0,
length=max_anchor_num,
padding_value=0.0,
batch_first=False
))
else:
# pad negatives
negative_shallow_contrastive_proj_queries = self.shallow_contrastive_projection_image(shallow_img_embs[i, new_negative_pad_indices[i], :])
negative_shallow_normalized_img_emb = F.normalize(negative_shallow_contrastive_proj_queries,
p=2, dim=-1)
shallow_normalized_img_embs.append(
pad_random_negative_tensor_given_length(shallow_normalized_img_emb,
negative_shallow_normalized_img_emb,
length=max_anchor_num
)
)
shallow_normalized_img_embs = torch.stack(shallow_normalized_img_embs, dim=0)
shallow_normalized_text_emb = shallow_proj_tokens
shallow_normalized_text_emb = pad_tensor_given_dim_length(shallow_normalized_text_emb,
dim=1,
length=256,
padding_value=0.0)
gathered_shallow_normalized_img_emb = gather_tensors(shallow_normalized_img_embs)
gathered_shallow_normalized_text_emb = gather_tensors(shallow_normalized_text_emb)
gathered_shallow_normalized_img_emb = gathered_shallow_normalized_img_emb.view(-1,
gathered_shallow_normalized_img_emb.size(
-1))
gathered_shallow_normalized_text_emb = gathered_shallow_normalized_text_emb.view(-1,
gathered_shallow_normalized_text_emb.size(
-1))
shallow_contrastive_logits = (
torch.matmul(gathered_shallow_normalized_img_emb,
gathered_shallow_normalized_text_emb.transpose(-1,
-2)) / self.shallow_log_scale.exp())
shallow_contrastive_logits = shallow_contrastive_logits.unsqueeze(0)
# apply text mask
text_attention_mask = text_attention_mask.view(-1).unsqueeze(0).unsqueeze(0)
text_attention_mask = text_attention_mask.repeat(1, shallow_contrastive_logits.size(1),
1) # copy along the image feature dimension
shallow_contrastive_logits = shallow_contrastive_logits.masked_fill(~text_attention_mask, -1000000)
# if PAD ZEROS, apply image mask
if image_masks is not None:
image_attention_mask = image_attention_mask.view(-1).unsqueeze(0).unsqueeze(-1)
image_attention_mask = image_attention_mask.repeat(1, 1, shallow_contrastive_logits.size(
2)) # copy along the text feature dimension
shallow_contrastive_logits = shallow_contrastive_logits.masked_fill(~image_attention_mask, -1000000)
# Note: 7. calculate image and text logits and maps
shallow_image_logits = shallow_contrastive_logits[:,
(rank * bs) * max_anchor_num: (rank * bs + bs) * max_anchor_num, :]
shallow_image_positive_map = normalized_positive_map(
shallow_positive_map[:, (rank * bs) * max_anchor_num: (rank * bs + bs) * max_anchor_num, :])
shallow_text_logits = shallow_contrastive_logits[:, :,
(rank * bs) * 256: (rank * bs + bs) * 256].transpose(1,
2)
shallow_text_positive_map = normalized_positive_map(
shallow_positive_map[:, :, (rank * bs) * 256: (rank * bs + bs) * 256].transpose(1, 2))
pos_inds = torch.nonzero(labels_flatten > 0).squeeze(1)
num_gpus = get_world_size()
total_num_pos = reduce_sum(pos_inds.new_tensor([pos_inds.numel()])).item()
num_pos_avg_per_gpu = max(total_num_pos / float(num_gpus), 1.0)
cls_loss = self.cls_loss_func(box_cls_flatten, labels_flatten.int()) / num_pos_avg_per_gpu
token_logits_loss = None
contrastive_align_loss = None
dot_product_token_loss = None
shallow_contrastive_loss = None
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS:
token_logits_loss = self.token_loss_func(token_logits_stacked,
token_labels_stacked, text_masks=text_masks,
version="binary") / num_pos_avg_per_gpu
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS:
contrastive_align_loss = self.ContrastiveAlignLoss(contrastive_logits, positive_map_box_to_self_text) / num_pos_avg_per_gpu
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS:
dot_product_token_loss = self.token_loss_func(dot_product_logits,
token_labels_stacked, text_masks=text_masks,
version="binary") / num_pos_avg_per_gpu
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS or \
self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS:
box_to_token_loss = self.NllSoftMaxLoss(shallow_image_logits, shallow_image_positive_map).sum()
token_to_box_loss = self.NllSoftMaxLoss(shallow_text_logits, shallow_text_positive_map).sum()
tot_loss = (box_to_token_loss + token_to_box_loss) / 2
shallow_contrastive_loss = tot_loss / num_pos_avg_per_gpu
box_regression_flatten = box_regression_flatten[pos_inds]
reg_targets_flatten = reg_targets_flatten[pos_inds]
anchors_flatten = anchors_flatten[pos_inds]
centerness_flatten = centerness_flatten[pos_inds]
if pos_inds.numel() > 0:
centerness_targets = self.compute_centerness_targets(reg_targets_flatten, anchors_flatten)
sum_centerness_targets_avg_per_gpu = reduce_sum(centerness_targets.sum()).item() / float(num_gpus)
reg_loss = self.GIoULoss(box_regression_flatten, reg_targets_flatten, anchors_flatten,
weight=centerness_targets) / sum_centerness_targets_avg_per_gpu
centerness_loss = self.centerness_loss_func(centerness_flatten, centerness_targets) / num_pos_avg_per_gpu
else:
reg_loss = box_regression_flatten.sum()
reduce_sum(centerness_flatten.new_tensor([0.0]))
centerness_loss = centerness_flatten.sum()
return cls_loss, reg_loss * self.cfg.MODEL.ATSS.REG_LOSS_WEIGHT, centerness_loss, \
token_logits_loss, \
contrastive_align_loss, \
dot_product_token_loss, \
shallow_contrastive_loss
def generate_anchor_labels(matched_targets):
labels_per_image = matched_targets.get_field("labels")
return labels_per_image
def make_focal_loss_evaluator(cfg, box_coder):
matcher = Matcher(
cfg.MODEL.FOCAL.FG_IOU_THRESHOLD,
cfg.MODEL.FOCAL.BG_IOU_THRESHOLD,
allow_low_quality_matches=True,
)
sigmoid_focal_loss = SigmoidFocalLoss(
cfg.MODEL.FOCAL.LOSS_GAMMA,
cfg.MODEL.FOCAL.LOSS_ALPHA
)
loss_evaluator = FocalLossComputation(
matcher,
box_coder,
generate_anchor_labels,
sigmoid_focal_loss,
bbox_reg_beta=cfg.MODEL.FOCAL.BBOX_REG_BETA,
regress_norm=cfg.MODEL.FOCAL.BBOX_REG_WEIGHT,
)
return loss_evaluator
def make_rpn_loss_evaluator(cfg, box_coder):
matcher = Matcher(
cfg.MODEL.RPN.FG_IOU_THRESHOLD,
cfg.MODEL.RPN.BG_IOU_THRESHOLD,
allow_low_quality_matches=True,
)
fg_bg_sampler = BalancedPositiveNegativeSampler(
cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE, cfg.MODEL.RPN.POSITIVE_FRACTION
)
loss_evaluator = RPNLossComputation(matcher, fg_bg_sampler, box_coder)
return loss_evaluator
def make_fcos_loss_evaluator(cfg):
loss_evaluator = FCOSLossComputation(cfg)
return loss_evaluator
def make_atss_loss_evaluator(cfg, box_coder):
loss_evaluator = ATSSLossComputation(cfg, box_coder)
return loss_evaluator
|