|
|
|
"""Centralized catalog of paths.""" |
|
|
|
import os |
|
|
|
|
|
def try_to_find(file, return_dir=False, search_path=['./DATASET', './OUTPUT', './data', './MODEL']): |
|
if not file: |
|
return file |
|
|
|
if file.startswith('catalog://'): |
|
return file |
|
|
|
DATASET_PATH = ['./'] |
|
if 'DATASET' in os.environ: |
|
DATASET_PATH.append(os.environ['DATASET']) |
|
DATASET_PATH += search_path |
|
|
|
for path in DATASET_PATH: |
|
if os.path.exists(os.path.join(path, file)): |
|
if return_dir: |
|
return path |
|
else: |
|
return os.path.join(path, file) |
|
|
|
print('Cannot find {} in {}'.format(file, DATASET_PATH)) |
|
exit(1) |
|
|
|
|
|
class DatasetCatalog(object): |
|
DATASETS = { |
|
|
|
|
|
"mixed_train": { |
|
"coco_img_dir": "coco/train2014", |
|
"vg_img_dir": "gqa/images", |
|
"ann_file": "mdetr_annotations/final_mixed_train.json", |
|
}, |
|
"mixed_train_no_coco": { |
|
"coco_img_dir": "coco/train2014", |
|
"vg_img_dir": "gqa/images", |
|
"ann_file": "mdetr_annotations/final_mixed_train_no_coco.json", |
|
}, |
|
|
|
|
|
"flickr30k_train": { |
|
"img_folder": "flickr30k/flickr30k_images/train", |
|
"ann_file": "mdetr_annotations/final_flickr_separateGT_train.json", |
|
"is_train": True |
|
}, |
|
"flickr30k_val": { |
|
"img_folder": "flickr30k/flickr30k_images/val", |
|
"ann_file": "mdetr_annotations/final_flickr_separateGT_val.json", |
|
"is_train": False |
|
}, |
|
"flickr30k_test": { |
|
"img_folder": "flickr30k/flickr30k_images/test", |
|
"ann_file": "mdetr_annotations/final_flickr_separateGT_test.json", |
|
"is_train": False |
|
}, |
|
|
|
|
|
"refexp_all_val": { |
|
"img_dir": "refcoco/train2014", |
|
"ann_file": "mdetr_annotations/final_refexp_val.json", |
|
"is_train": False |
|
}, |
|
|
|
|
|
"gqa_val": { |
|
"img_dir": "gqa/images", |
|
"ann_file": "mdetr_annotations/final_gqa_val.json", |
|
"is_train": False |
|
}, |
|
|
|
|
|
"phrasecut_train": { |
|
"img_dir": "gqa/images", |
|
"ann_file": "mdetr_annotations/finetune_phrasecut_train.json", |
|
"is_train": True |
|
}, |
|
|
|
|
|
|
|
|
|
"coco_dt_train": { |
|
"dataset_file": "coco_dt", |
|
"yaml_path": "coco_tsv/coco_obj.yaml", |
|
"is_train": True, |
|
}, |
|
"COCO_odinw_train_8copy_dt_train": { |
|
"dataset_file": "coco_odinw_dt", |
|
"yaml_path": "coco_tsv/COCO_odinw_train_8copy.yaml", |
|
"is_train": True, |
|
}, |
|
"COCO_odinw_val_dt_train": { |
|
"dataset_file": "coco_odinw_dt", |
|
"yaml_path": "coco_tsv/COCO_odinw_val.yaml", |
|
"is_train": False, |
|
}, |
|
|
|
"lvisv1_dt_train": { |
|
"dataset_file": "lvisv1_dt", |
|
"yaml_path": "coco_tsv/LVIS_v1_train.yaml", |
|
"is_train": True, |
|
}, |
|
"LVIS_odinw_train_8copy_dt_train": { |
|
"dataset_file": "coco_odinw_dt", |
|
"yaml_path": "coco_tsv/LVIS_odinw_train_8copy.yaml", |
|
"is_train": True, |
|
}, |
|
|
|
"object365_dt_train": { |
|
"dataset_file": "object365_dt", |
|
"yaml_path": "Objects365/objects365_train_vgoiv6.cas2000.yaml", |
|
"is_train": True, |
|
}, |
|
"object365_odinw_2copy_dt_train": { |
|
"dataset_file": "object365_odinw_dt", |
|
"yaml_path": "Objects365/objects365_train_odinw.cas2000_2copy.yaml", |
|
"is_train": True, |
|
}, |
|
"objects365_odtsv_train": { |
|
"dataset_file": "objects365_odtsv", |
|
"yaml_path": "Objects365/train.cas2000.yaml", |
|
"is_train": True, |
|
}, |
|
"objects365_odtsv_val": { |
|
"dataset_file": "objects365_odtsv", |
|
"yaml_path": "Objects365/val.yaml", |
|
"is_train": False, |
|
}, |
|
|
|
|
|
"imagenetod_train_odinw_2copy_dt": { |
|
"dataset_file": "imagenetod_odinw_dt", |
|
"yaml_path": "imagenet_od/imagenetod_train_odinw_2copy.yaml", |
|
"is_train": True, |
|
}, |
|
|
|
|
|
"oi_train_odinw_dt": { |
|
"dataset_file": "oi_odinw_dt", |
|
"yaml_path": "openimages_v5c/oi_train_odinw.cas.2000.yaml", |
|
"is_train": True, |
|
}, |
|
|
|
|
|
"vg_dt_train": { |
|
"dataset_file": "vg_dt", |
|
"yaml_path": "visualgenome/train_vgoi6_clipped.yaml", |
|
"is_train": True, |
|
}, |
|
|
|
"vg_odinw_clipped_8copy_dt_train": { |
|
"dataset_file": "vg_odinw_clipped_8copy_dt", |
|
"yaml_path": "visualgenome/train_odinw_clipped_8copy.yaml", |
|
"is_train": True, |
|
}, |
|
"vg_vgoi6_clipped_8copy_dt_train": { |
|
"dataset_file": "vg_vgoi6_clipped_8copy_dt", |
|
"yaml_path": "visualgenome/train_vgoi6_clipped_8copy.yaml", |
|
"is_train": True, |
|
}, |
|
|
|
|
|
"coco_grounding_train": { |
|
"img_dir": "coco/train2017", |
|
"ann_file": "coco/annotations/instances_train2017.json", |
|
"is_train": True, |
|
}, |
|
|
|
"lvis_grounding_train": { |
|
"img_dir": "coco", |
|
"ann_file": "coco/annotations/lvis_od_train.json" |
|
}, |
|
|
|
|
|
"lvis_val": { |
|
"img_dir": "coco", |
|
"ann_file": "coco/annotations/lvis_od_val.json" |
|
}, |
|
"coco_2017_train": { |
|
"img_dir": "coco/train2017", |
|
"ann_file": "coco/annotations/instances_train2017.json" |
|
}, |
|
"coco_2017_val": { |
|
"img_dir": "coco/val2017", |
|
"ann_file": "coco/annotations/instances_val2017.json" |
|
}, |
|
"coco_2017_test": { |
|
"img_dir": "coco/test2017", |
|
"ann_file": "coco/annotations/image_info_test-dev2017.json" |
|
}, |
|
"coco_2014_train": { |
|
"img_dir": "coco/train2014", |
|
"ann_file": "coco/annotations/instances_train2014.json" |
|
}, |
|
"coco_2014_val": { |
|
"img_dir": "coco/val2014", |
|
"ann_file": "coco/annotations/instances_val2014.json" |
|
}, |
|
"coco_2014_minival": { |
|
"img_dir": "coco/val2014", |
|
"ann_file": "coco/annotations/instances_minival2014.json" |
|
}, |
|
} |
|
|
|
@staticmethod |
|
def set(name, info): |
|
DatasetCatalog.DATASETS.update({name: info}) |
|
|
|
@staticmethod |
|
def get(name): |
|
|
|
if name.endswith('_bg'): |
|
attrs = DatasetCatalog.DATASETS[name] |
|
data_dir = try_to_find(attrs["ann_file"], return_dir=True) |
|
args = dict( |
|
root=os.path.join(data_dir, attrs["img_dir"]), |
|
ann_file=os.path.join(data_dir, attrs["ann_file"]), |
|
) |
|
return dict( |
|
factory="Background", |
|
args=args, |
|
) |
|
else: |
|
if "bing" in name.split("_"): |
|
attrs = DatasetCatalog.DATASETS["bing_caption_train"] |
|
else: |
|
attrs = DatasetCatalog.DATASETS[name] |
|
|
|
if "voc" in name and 'split' in attrs: |
|
data_dir = try_to_find(attrs["data_dir"], return_dir=True) |
|
args = dict( |
|
data_dir=os.path.join(data_dir, attrs["data_dir"]), |
|
split=attrs["split"], |
|
) |
|
return dict( |
|
factory="PascalVOCDataset", |
|
args=args, |
|
) |
|
elif "mixed" in name: |
|
vg_img_dir = try_to_find(attrs["vg_img_dir"], return_dir=True) |
|
coco_img_dir = try_to_find(attrs["coco_img_dir"], return_dir=True) |
|
ann_file = try_to_find(attrs["ann_file"], return_dir=True) |
|
args = dict( |
|
img_folder_coco=os.path.join(coco_img_dir, attrs["coco_img_dir"]), |
|
img_folder_vg=os.path.join(vg_img_dir, attrs["vg_img_dir"]), |
|
ann_file=os.path.join(ann_file, attrs["ann_file"]) |
|
) |
|
return dict( |
|
factory="MixedDataset", |
|
args=args, |
|
) |
|
elif "flickr" in name: |
|
img_dir = try_to_find(attrs["img_folder"], return_dir=True) |
|
ann_dir = try_to_find(attrs["ann_file"], return_dir=True) |
|
args = dict( |
|
img_folder=os.path.join(img_dir, attrs["img_folder"]), |
|
ann_file=os.path.join(ann_dir, attrs["ann_file"]), |
|
is_train=attrs["is_train"] |
|
) |
|
return dict( |
|
factory="FlickrDataset", |
|
args=args, |
|
) |
|
elif "refexp" in name: |
|
img_dir = try_to_find(attrs["img_dir"], return_dir=True) |
|
ann_dir = try_to_find(attrs["ann_file"], return_dir=True) |
|
args = dict( |
|
img_folder=os.path.join(img_dir, attrs["img_dir"]), |
|
ann_file=os.path.join(ann_dir, attrs["ann_file"]), |
|
) |
|
return dict( |
|
factory="RefExpDataset", |
|
args=args, |
|
) |
|
elif "gqa" in name: |
|
img_dir = try_to_find(attrs["img_dir"], return_dir=True) |
|
ann_dir = try_to_find(attrs["ann_file"], return_dir=True) |
|
args = dict( |
|
img_folder=os.path.join(img_dir, attrs["img_dir"]), |
|
ann_file=os.path.join(ann_dir, attrs["ann_file"]), |
|
) |
|
return dict( |
|
factory="GQADataset", |
|
args=args, |
|
) |
|
elif "phrasecut" in name: |
|
img_dir = try_to_find(attrs["img_dir"], return_dir=True) |
|
ann_dir = try_to_find(attrs["ann_file"], return_dir=True) |
|
args = dict( |
|
img_folder=os.path.join(img_dir, attrs["img_dir"]), |
|
ann_file=os.path.join(ann_dir, attrs["ann_file"]), |
|
) |
|
return dict( |
|
factory="PhrasecutDetection", |
|
args=args, |
|
) |
|
elif "_caption" in name: |
|
yaml_path = try_to_find(attrs["yaml_path"], return_dir=True) |
|
if "no_coco" in name: |
|
yaml_name = attrs["yaml_name_no_coco"] |
|
else: |
|
yaml_name = attrs["yaml_name"] |
|
yaml_file_name = "{}.{}.yaml".format(yaml_name, name.split("_")[2]) |
|
args = dict( |
|
yaml_file=os.path.join(yaml_path, attrs["yaml_path"], yaml_file_name) |
|
) |
|
return dict( |
|
factory="CaptionTSV", |
|
args=args, |
|
) |
|
elif "inferencecap" in name: |
|
yaml_file_name = try_to_find(attrs["yaml_path"]) |
|
args = dict( |
|
yaml_file=yaml_file_name) |
|
return dict( |
|
factory="CaptionTSV", |
|
args=args, |
|
) |
|
elif "pseudo_data" in name: |
|
args = dict( |
|
yaml_file=try_to_find(attrs["yaml_path"]) |
|
) |
|
return dict( |
|
factory="PseudoData", |
|
args=args, |
|
) |
|
elif "_dt" in name: |
|
dataset_file = attrs["dataset_file"] |
|
yaml_path = try_to_find(attrs["yaml_path"], return_dir=True) |
|
args = dict( |
|
name=dataset_file, |
|
yaml_file=os.path.join(yaml_path, attrs["yaml_path"]), |
|
) |
|
return dict( |
|
factory="CocoDetectionTSV", |
|
args=args, |
|
) |
|
elif "_odtsv" in name: |
|
dataset_file = attrs["dataset_file"] |
|
yaml_path = try_to_find(attrs["yaml_path"], return_dir=True) |
|
args = dict( |
|
name=dataset_file, |
|
yaml_file=os.path.join(yaml_path, attrs["yaml_path"]), |
|
) |
|
return dict( |
|
factory="ODTSVDataset", |
|
args=args, |
|
) |
|
elif "_grounding" in name: |
|
img_dir = try_to_find(attrs["img_dir"], return_dir=True) |
|
ann_dir = try_to_find(attrs["ann_file"], return_dir=True) |
|
args = dict( |
|
img_folder=os.path.join(img_dir, attrs["img_dir"]), |
|
ann_file=os.path.join(ann_dir, attrs["ann_file"]), |
|
) |
|
return dict( |
|
factory="CocoGrounding", |
|
args=args, |
|
) |
|
elif "lvis_evaluation" in name: |
|
img_dir = try_to_find(attrs["img_dir"], return_dir=True) |
|
ann_dir = try_to_find(attrs["ann_file"], return_dir=True) |
|
args = dict( |
|
img_folder=os.path.join(img_dir, attrs["img_dir"]), |
|
ann_file=os.path.join(ann_dir, attrs["ann_file"]), |
|
) |
|
return dict( |
|
factory="LvisDetection", |
|
args=args, |
|
) |
|
else: |
|
ann_dir = try_to_find(attrs["ann_file"], return_dir=True) |
|
img_dir = try_to_find(attrs["img_dir"], return_dir=True) |
|
args = dict( |
|
root=os.path.join(img_dir, attrs["img_dir"]), |
|
ann_file=os.path.join(ann_dir, attrs["ann_file"]), |
|
) |
|
for k, v in attrs.items(): |
|
args.update({k: os.path.join(ann_dir, v)}) |
|
return dict( |
|
factory="COCODataset", |
|
args=args, |
|
) |
|
|
|
raise RuntimeError("Dataset not available: {}".format(name)) |
|
|
|
|
|
class ModelCatalog(object): |
|
S3_C2_DETECTRON_URL = "https://dl.fbaipublicfiles.com/detectron" |
|
C2_IMAGENET_MODELS = { |
|
"MSRA/R-50": "ImageNetPretrained/MSRA/R-50.pkl", |
|
"MSRA/R-50-GN": "ImageNetPretrained/47261647/R-50-GN.pkl", |
|
"MSRA/R-101": "ImageNetPretrained/MSRA/R-101.pkl", |
|
"MSRA/R-101-GN": "ImageNetPretrained/47592356/R-101-GN.pkl", |
|
"FAIR/20171220/X-101-32x8d": "ImageNetPretrained/20171220/X-101-32x8d.pkl", |
|
"FAIR/20171220/X-101-64x4d": "ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl", |
|
} |
|
|
|
C2_DETECTRON_SUFFIX = "output/train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_final.pkl" |
|
C2_DETECTRON_MODELS = { |
|
"35857197/e2e_faster_rcnn_R-50-C4_1x": "01_33_49.iAX0mXvW", |
|
"35857345/e2e_faster_rcnn_R-50-FPN_1x": "01_36_30.cUF7QR7I", |
|
"35857890/e2e_faster_rcnn_R-101-FPN_1x": "01_38_50.sNxI7sX7", |
|
"36761737/e2e_faster_rcnn_X-101-32x8d-FPN_1x": "06_31_39.5MIHi1fZ", |
|
"35858791/e2e_mask_rcnn_R-50-C4_1x": "01_45_57.ZgkA7hPB", |
|
"35858933/e2e_mask_rcnn_R-50-FPN_1x": "01_48_14.DzEQe4wC", |
|
"35861795/e2e_mask_rcnn_R-101-FPN_1x": "02_31_37.KqyEK4tT", |
|
"36761843/e2e_mask_rcnn_X-101-32x8d-FPN_1x": "06_35_59.RZotkLKI", |
|
} |
|
|
|
@staticmethod |
|
def get(name): |
|
if name.startswith("Caffe2Detectron/COCO"): |
|
return ModelCatalog.get_c2_detectron_12_2017_baselines(name) |
|
if name.startswith("ImageNetPretrained"): |
|
return ModelCatalog.get_c2_imagenet_pretrained(name) |
|
raise RuntimeError("model not present in the catalog {}".format(name)) |
|
|
|
@staticmethod |
|
def get_c2_imagenet_pretrained(name): |
|
prefix = ModelCatalog.S3_C2_DETECTRON_URL |
|
name = name[len("ImageNetPretrained/"):] |
|
name = ModelCatalog.C2_IMAGENET_MODELS[name] |
|
url = "/".join([prefix, name]) |
|
return url |
|
|
|
@staticmethod |
|
def get_c2_detectron_12_2017_baselines(name): |
|
|
|
|
|
|
|
prefix = ModelCatalog.S3_C2_DETECTRON_URL |
|
suffix = ModelCatalog.C2_DETECTRON_SUFFIX |
|
|
|
name = name[len("Caffe2Detectron/COCO/"):] |
|
|
|
model_id, model_name = name.split("/") |
|
|
|
model_name = "{}.yaml".format(model_name) |
|
signature = ModelCatalog.C2_DETECTRON_MODELS[name] |
|
unique_name = ".".join([model_name, signature]) |
|
url = "/".join([prefix, model_id, "12_2017_baselines", unique_name, suffix]) |
|
return url |
|
|