|
|
|
#include "cpu/vision.h" |
|
|
|
|
|
template <typename T> |
|
struct PreCalc { |
|
int pos1; |
|
int pos2; |
|
int pos3; |
|
int pos4; |
|
T w1; |
|
T w2; |
|
T w3; |
|
T w4; |
|
}; |
|
|
|
template <typename T> |
|
void pre_calc_for_bilinear_interpolate( |
|
const int height, |
|
const int width, |
|
const int pooled_height, |
|
const int pooled_width, |
|
const int iy_upper, |
|
const int ix_upper, |
|
T roi_start_h, |
|
T roi_start_w, |
|
T bin_size_h, |
|
T bin_size_w, |
|
int roi_bin_grid_h, |
|
int roi_bin_grid_w, |
|
std::vector<PreCalc<T>>& pre_calc) { |
|
int pre_calc_index = 0; |
|
for (int ph = 0; ph < pooled_height; ph++) { |
|
for (int pw = 0; pw < pooled_width; pw++) { |
|
for (int iy = 0; iy < iy_upper; iy++) { |
|
const T yy = roi_start_h + ph * bin_size_h + |
|
static_cast<T>(iy + .5f) * bin_size_h / |
|
static_cast<T>(roi_bin_grid_h); |
|
for (int ix = 0; ix < ix_upper; ix++) { |
|
const T xx = roi_start_w + pw * bin_size_w + |
|
static_cast<T>(ix + .5f) * bin_size_w / |
|
static_cast<T>(roi_bin_grid_w); |
|
|
|
T x = xx; |
|
T y = yy; |
|
|
|
if (y < -1.0 || y > height || x < -1.0 || x > width) { |
|
|
|
PreCalc<T> pc; |
|
pc.pos1 = 0; |
|
pc.pos2 = 0; |
|
pc.pos3 = 0; |
|
pc.pos4 = 0; |
|
pc.w1 = 0; |
|
pc.w2 = 0; |
|
pc.w3 = 0; |
|
pc.w4 = 0; |
|
pre_calc[pre_calc_index] = pc; |
|
pre_calc_index += 1; |
|
continue; |
|
} |
|
|
|
if (y <= 0) { |
|
y = 0; |
|
} |
|
if (x <= 0) { |
|
x = 0; |
|
} |
|
|
|
int y_low = (int)y; |
|
int x_low = (int)x; |
|
int y_high; |
|
int x_high; |
|
|
|
if (y_low >= height - 1) { |
|
y_high = y_low = height - 1; |
|
y = (T)y_low; |
|
} else { |
|
y_high = y_low + 1; |
|
} |
|
|
|
if (x_low >= width - 1) { |
|
x_high = x_low = width - 1; |
|
x = (T)x_low; |
|
} else { |
|
x_high = x_low + 1; |
|
} |
|
|
|
T ly = y - y_low; |
|
T lx = x - x_low; |
|
T hy = 1. - ly, hx = 1. - lx; |
|
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; |
|
|
|
|
|
PreCalc<T> pc; |
|
pc.pos1 = y_low * width + x_low; |
|
pc.pos2 = y_low * width + x_high; |
|
pc.pos3 = y_high * width + x_low; |
|
pc.pos4 = y_high * width + x_high; |
|
pc.w1 = w1; |
|
pc.w2 = w2; |
|
pc.w3 = w3; |
|
pc.w4 = w4; |
|
pre_calc[pre_calc_index] = pc; |
|
|
|
pre_calc_index += 1; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
template <typename T> |
|
void ROIAlignForward_cpu_kernel( |
|
const int nthreads, |
|
const T* bottom_data, |
|
const T& spatial_scale, |
|
const int channels, |
|
const int height, |
|
const int width, |
|
const int pooled_height, |
|
const int pooled_width, |
|
const int sampling_ratio, |
|
const T* bottom_rois, |
|
|
|
T* top_data) { |
|
|
|
int roi_cols = 5; |
|
|
|
int n_rois = nthreads / channels / pooled_width / pooled_height; |
|
|
|
|
|
|
|
for (int n = 0; n < n_rois; n++) { |
|
int index_n = n * channels * pooled_width * pooled_height; |
|
|
|
|
|
const T* offset_bottom_rois = bottom_rois + n * roi_cols; |
|
int roi_batch_ind = 0; |
|
if (roi_cols == 5) { |
|
roi_batch_ind = offset_bottom_rois[0]; |
|
offset_bottom_rois++; |
|
} |
|
|
|
|
|
T roi_start_w = offset_bottom_rois[0] * spatial_scale; |
|
T roi_start_h = offset_bottom_rois[1] * spatial_scale; |
|
T roi_end_w = offset_bottom_rois[2] * spatial_scale; |
|
T roi_end_h = offset_bottom_rois[3] * spatial_scale; |
|
|
|
|
|
|
|
|
|
|
|
|
|
T roi_width = std::max(roi_end_w - roi_start_w, (T)1.); |
|
T roi_height = std::max(roi_end_h - roi_start_h, (T)1.); |
|
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); |
|
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); |
|
|
|
|
|
int roi_bin_grid_h = (sampling_ratio > 0) |
|
? sampling_ratio |
|
: ceil(roi_height / pooled_height); |
|
int roi_bin_grid_w = |
|
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); |
|
|
|
|
|
const T count = roi_bin_grid_h * roi_bin_grid_w; |
|
|
|
|
|
|
|
std::vector<PreCalc<T>> pre_calc( |
|
roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height); |
|
pre_calc_for_bilinear_interpolate( |
|
height, |
|
width, |
|
pooled_height, |
|
pooled_width, |
|
roi_bin_grid_h, |
|
roi_bin_grid_w, |
|
roi_start_h, |
|
roi_start_w, |
|
bin_size_h, |
|
bin_size_w, |
|
roi_bin_grid_h, |
|
roi_bin_grid_w, |
|
pre_calc); |
|
|
|
for (int c = 0; c < channels; c++) { |
|
int index_n_c = index_n + c * pooled_width * pooled_height; |
|
const T* offset_bottom_data = |
|
bottom_data + (roi_batch_ind * channels + c) * height * width; |
|
int pre_calc_index = 0; |
|
|
|
for (int ph = 0; ph < pooled_height; ph++) { |
|
for (int pw = 0; pw < pooled_width; pw++) { |
|
int index = index_n_c + ph * pooled_width + pw; |
|
|
|
T output_val = 0.; |
|
for (int iy = 0; iy < roi_bin_grid_h; iy++) { |
|
for (int ix = 0; ix < roi_bin_grid_w; ix++) { |
|
PreCalc<T> pc = pre_calc[pre_calc_index]; |
|
output_val += pc.w1 * offset_bottom_data[pc.pos1] + |
|
pc.w2 * offset_bottom_data[pc.pos2] + |
|
pc.w3 * offset_bottom_data[pc.pos3] + |
|
pc.w4 * offset_bottom_data[pc.pos4]; |
|
|
|
pre_calc_index += 1; |
|
} |
|
} |
|
output_val /= count; |
|
|
|
top_data[index] = output_val; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
at::Tensor ROIAlign_forward_cpu(const at::Tensor& input, |
|
const at::Tensor& rois, |
|
const float spatial_scale, |
|
const int pooled_height, |
|
const int pooled_width, |
|
const int sampling_ratio) { |
|
AT_ASSERTM(!input.device().is_cuda(), "input must be a CPU tensor"); |
|
AT_ASSERTM(!rois.device().is_cuda(), "rois must be a CPU tensor"); |
|
|
|
auto num_rois = rois.size(0); |
|
auto channels = input.size(1); |
|
auto height = input.size(2); |
|
auto width = input.size(3); |
|
|
|
auto output = at::empty({num_rois, channels, pooled_height, pooled_width}, input.options()); |
|
auto output_size = num_rois * pooled_height * pooled_width * channels; |
|
|
|
if (output.numel() == 0) { |
|
return output; |
|
} |
|
|
|
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "ROIAlign_forward", [&] { |
|
ROIAlignForward_cpu_kernel<scalar_t>( |
|
output_size, |
|
input.data_ptr<scalar_t>(), |
|
spatial_scale, |
|
channels, |
|
height, |
|
width, |
|
pooled_height, |
|
pooled_width, |
|
sampling_ratio, |
|
rois.data_ptr<scalar_t>(), |
|
output.data_ptr<scalar_t>()); |
|
}); |
|
return output; |
|
} |
|
|