|
|
|
#include "cpu/vision.h" |
|
|
|
|
|
template <typename scalar_t> |
|
std::pair<at::Tensor, at::Tensor> soft_nms_cpu_kernel(const at::Tensor& dets, |
|
const at::Tensor& scores, |
|
const float threshold, |
|
const float sigma) { |
|
AT_ASSERTM(!dets.device().is_cuda(), "dets must be a CPU tensor"); |
|
AT_ASSERTM(!scores.device().is_cuda(), "scores must be a CPU tensor"); |
|
AT_ASSERTM(dets.type() == scores.type(), "dets should have the same type as scores"); |
|
|
|
if (dets.numel() == 0) { |
|
return std::make_pair(at::empty({0}, dets.options().dtype(at::kLong).device(at::kCPU)), |
|
at::empty({0}, scores.options().dtype(at::kFloat).device(at::kCPU))); |
|
} |
|
|
|
auto x1_t = dets.select(1, 0).contiguous(); |
|
auto y1_t = dets.select(1, 1).contiguous(); |
|
auto x2_t = dets.select(1, 2).contiguous(); |
|
auto y2_t = dets.select(1, 3).contiguous(); |
|
|
|
auto scores_t = scores.clone(); |
|
|
|
at::Tensor areas_t = (x2_t - x1_t + 1) * (y2_t - y1_t + 1); |
|
auto ndets = dets.size(0); |
|
auto inds_t = at::arange(ndets, dets.options().dtype(at::kLong).device(at::kCPU)); |
|
|
|
auto x1 = x1_t.data_ptr<scalar_t>(); |
|
auto y1 = y1_t.data_ptr<scalar_t>(); |
|
auto x2 = x2_t.data_ptr<scalar_t>(); |
|
auto y2 = y2_t.data_ptr<scalar_t>(); |
|
auto s = scores_t.data_ptr<scalar_t>(); |
|
auto inds = inds_t.data_ptr<int64_t>(); |
|
auto areas = areas_t.data_ptr<scalar_t>(); |
|
|
|
for (int64_t i = 0; i < ndets; i++) { |
|
|
|
auto ix1 = x1[i]; |
|
auto iy1 = y1[i]; |
|
auto ix2 = x2[i]; |
|
auto iy2 = y2[i]; |
|
auto is = s[i]; |
|
auto ii = inds[i]; |
|
auto iarea = areas[i]; |
|
|
|
auto maxpos = scores_t.slice(0, i, ndets).argmax().item<int64_t>() + i; |
|
|
|
|
|
x1[i] = x1[maxpos]; |
|
y1[i] = y1[maxpos]; |
|
x2[i] = x2[maxpos]; |
|
y2[i] = y2[maxpos]; |
|
s[i] = s[maxpos]; |
|
inds[i] = inds[maxpos]; |
|
areas[i] = areas[maxpos]; |
|
|
|
|
|
x1[maxpos] = ix1; |
|
y1[maxpos] = iy1; |
|
x2[maxpos] = ix2; |
|
y2[maxpos] = iy2; |
|
s[maxpos] = is; |
|
inds[maxpos] = ii; |
|
areas[maxpos] = iarea; |
|
|
|
ix1 = x1[i]; |
|
iy1 = y1[i]; |
|
ix2 = x2[i]; |
|
iy2 = y2[i]; |
|
iarea = areas[i]; |
|
|
|
|
|
|
|
for (int64_t j = i + 1; j < ndets; j++) { |
|
auto xx1 = std::max(ix1, x1[j]); |
|
auto yy1 = std::max(iy1, y1[j]); |
|
auto xx2 = std::min(ix2, x2[j]); |
|
auto yy2 = std::min(iy2, y2[j]); |
|
|
|
auto w = std::max(static_cast<scalar_t>(0), xx2 - xx1 + 1); |
|
auto h = std::max(static_cast<scalar_t>(0), yy2 - yy1 + 1); |
|
|
|
auto inter = w * h; |
|
auto ovr = inter / (iarea + areas[j] - inter); |
|
|
|
s[j] = s[j] * std::exp(- std::pow(ovr, 2.0) / sigma); |
|
|
|
|
|
|
|
if (s[j] < threshold) { |
|
x1[j] = x1[ndets - 1]; |
|
y1[j] = y1[ndets - 1]; |
|
x2[j] = x2[ndets - 1]; |
|
y2[j] = y2[ndets - 1]; |
|
s[j] = s[ndets - 1]; |
|
inds[j] = inds[ndets - 1]; |
|
areas[j] = areas[ndets - 1]; |
|
j--; |
|
ndets--; |
|
} |
|
} |
|
} |
|
return std::make_pair(inds_t.slice(0, 0, ndets), scores_t.slice(0, 0, ndets)); |
|
} |
|
|
|
std::pair<at::Tensor, at::Tensor> soft_nms_cpu(const at::Tensor& dets, |
|
const at::Tensor& scores, |
|
const float threshold, |
|
const float sigma) { |
|
std::pair<at::Tensor, at::Tensor> result; |
|
AT_DISPATCH_FLOATING_TYPES(dets.scalar_type(), "soft_nms", [&] { |
|
result = soft_nms_cpu_kernel<scalar_t>(dets, scores, threshold, sigma); |
|
}); |
|
return result; |
|
} |