|
|
|
#include <ATen/ATen.h> |
|
#include <ATen/cuda/CUDAContext.h> |
|
|
|
#include <THC/THC.h> |
|
#include <THC/THCAtomics.cuh> |
|
#include <THC/THCDeviceUtils.cuh> |
|
|
|
|
|
|
|
#define CUDA_1D_KERNEL_LOOP(i, n) \ |
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \ |
|
i += blockDim.x * gridDim.x) |
|
|
|
|
|
template <typename T> |
|
__global__ void RoIPoolFForward(const int nthreads, const T* bottom_data, |
|
const T spatial_scale, const int channels, const int height, |
|
const int width, const int pooled_height, const int pooled_width, |
|
const T* bottom_rois, T* top_data, int* argmax_data) { |
|
CUDA_1D_KERNEL_LOOP(index, nthreads) { |
|
|
|
int pw = index % pooled_width; |
|
int ph = (index / pooled_width) % pooled_height; |
|
int c = (index / pooled_width / pooled_height) % channels; |
|
int n = index / pooled_width / pooled_height / channels; |
|
|
|
const T* offset_bottom_rois = bottom_rois + n * 5; |
|
int roi_batch_ind = offset_bottom_rois[0]; |
|
int roi_start_w = round(offset_bottom_rois[1] * spatial_scale); |
|
int roi_start_h = round(offset_bottom_rois[2] * spatial_scale); |
|
int roi_end_w = round(offset_bottom_rois[3] * spatial_scale); |
|
int roi_end_h = round(offset_bottom_rois[4] * spatial_scale); |
|
|
|
|
|
int roi_width = max(roi_end_w - roi_start_w + 1, 1); |
|
int roi_height = max(roi_end_h - roi_start_h + 1, 1); |
|
T bin_size_h = static_cast<T>(roi_height) |
|
/ static_cast<T>(pooled_height); |
|
T bin_size_w = static_cast<T>(roi_width) |
|
/ static_cast<T>(pooled_width); |
|
|
|
int hstart = static_cast<int>(floor(static_cast<T>(ph) |
|
* bin_size_h)); |
|
int wstart = static_cast<int>(floor(static_cast<T>(pw) |
|
* bin_size_w)); |
|
int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) |
|
* bin_size_h)); |
|
int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) |
|
* bin_size_w)); |
|
|
|
|
|
hstart = min(max(hstart + roi_start_h, 0), height); |
|
hend = min(max(hend + roi_start_h, 0), height); |
|
wstart = min(max(wstart + roi_start_w, 0), width); |
|
wend = min(max(wend + roi_start_w, 0), width); |
|
bool is_empty = (hend <= hstart) || (wend <= wstart); |
|
|
|
|
|
T maxval = is_empty ? 0 : -FLT_MAX; |
|
|
|
int maxidx = -1; |
|
const T* offset_bottom_data = |
|
bottom_data + (roi_batch_ind * channels + c) * height * width; |
|
for (int h = hstart; h < hend; ++h) { |
|
for (int w = wstart; w < wend; ++w) { |
|
int bottom_index = h * width + w; |
|
if (offset_bottom_data[bottom_index] > maxval) { |
|
maxval = offset_bottom_data[bottom_index]; |
|
maxidx = bottom_index; |
|
} |
|
} |
|
} |
|
top_data[index] = maxval; |
|
argmax_data[index] = maxidx; |
|
} |
|
} |
|
|
|
template <typename T> |
|
__global__ void RoIPoolFBackward(const int nthreads, const T* top_diff, |
|
const int* argmax_data, const int num_rois, const T spatial_scale, |
|
const int channels, const int height, const int width, |
|
const int pooled_height, const int pooled_width, T* bottom_diff, |
|
const T* bottom_rois) { |
|
CUDA_1D_KERNEL_LOOP(index, nthreads) { |
|
|
|
int pw = index % pooled_width; |
|
int ph = (index / pooled_width) % pooled_height; |
|
int c = (index / pooled_width / pooled_height) % channels; |
|
int n = index / pooled_width / pooled_height / channels; |
|
|
|
const T* offset_bottom_rois = bottom_rois + n * 5; |
|
int roi_batch_ind = offset_bottom_rois[0]; |
|
int bottom_offset = (roi_batch_ind * channels + c) * height * width; |
|
int top_offset = (n * channels + c) * pooled_height * pooled_width; |
|
const T* offset_top_diff = top_diff + top_offset; |
|
T* offset_bottom_diff = bottom_diff + bottom_offset; |
|
const int* offset_argmax_data = argmax_data + top_offset; |
|
|
|
int argmax = offset_argmax_data[ph * pooled_width + pw]; |
|
if (argmax != -1) { |
|
atomicAdd( |
|
offset_bottom_diff + argmax, |
|
static_cast<T>(offset_top_diff[ph * pooled_width + pw])); |
|
|
|
} |
|
} |
|
} |
|
|
|
std::tuple<at::Tensor, at::Tensor> ROIPool_forward_cuda(const at::Tensor& input, |
|
const at::Tensor& rois, |
|
const float spatial_scale, |
|
const int pooled_height, |
|
const int pooled_width) { |
|
AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor"); |
|
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); |
|
|
|
auto num_rois = rois.size(0); |
|
auto channels = input.size(1); |
|
auto height = input.size(2); |
|
auto width = input.size(3); |
|
|
|
auto output = at::empty({num_rois, channels, pooled_height, pooled_width}, input.options()); |
|
auto output_size = num_rois * pooled_height * pooled_width * channels; |
|
auto argmax = at::zeros({num_rois, channels, pooled_height, pooled_width}, input.options().dtype(at::kInt)); |
|
|
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); |
|
|
|
dim3 grid(std::min(THCCeilDiv(output_size, 512L), 4096L)); |
|
dim3 block(512); |
|
|
|
if (output.numel() == 0) { |
|
THCudaCheck(cudaGetLastError()); |
|
return std::make_tuple(output, argmax); |
|
} |
|
|
|
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "ROIPool_forward", [&] { |
|
RoIPoolFForward<scalar_t><<<grid, block, 0, stream>>>( |
|
output_size, |
|
input.contiguous().data_ptr<scalar_t>(), |
|
spatial_scale, |
|
channels, |
|
height, |
|
width, |
|
pooled_height, |
|
pooled_width, |
|
rois.contiguous().data_ptr<scalar_t>(), |
|
output.data_ptr<scalar_t>(), |
|
argmax.data_ptr<int>()); |
|
}); |
|
THCudaCheck(cudaGetLastError()); |
|
return std::make_tuple(output, argmax); |
|
} |
|
|
|
|
|
at::Tensor ROIPool_backward_cuda(const at::Tensor& grad, |
|
const at::Tensor& input, |
|
const at::Tensor& rois, |
|
const at::Tensor& argmax, |
|
const float spatial_scale, |
|
const int pooled_height, |
|
const int pooled_width, |
|
const int batch_size, |
|
const int channels, |
|
const int height, |
|
const int width) { |
|
AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor"); |
|
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); |
|
|
|
|
|
auto num_rois = rois.size(0); |
|
auto grad_input = at::zeros({batch_size, channels, height, width}, grad.options()); |
|
|
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); |
|
|
|
dim3 grid(std::min(THCCeilDiv(grad.numel(), 512L), 4096L)); |
|
dim3 block(512); |
|
|
|
|
|
if (grad.numel() == 0) { |
|
THCudaCheck(cudaGetLastError()); |
|
return grad_input; |
|
} |
|
|
|
AT_DISPATCH_FLOATING_TYPES(grad.scalar_type(), "ROIPool_backward", [&] { |
|
RoIPoolFBackward<scalar_t><<<grid, block, 0, stream>>>( |
|
grad.numel(), |
|
grad.contiguous().data_ptr<scalar_t>(), |
|
argmax.data_ptr<int>(), |
|
num_rois, |
|
spatial_scale, |
|
channels, |
|
height, |
|
width, |
|
pooled_height, |
|
pooled_width, |
|
grad_input.data_ptr<scalar_t>(), |
|
rois.contiguous().data_ptr<scalar_t>()); |
|
}); |
|
THCudaCheck(cudaGetLastError()); |
|
return grad_input; |
|
} |
|
|