|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <ATen/ATen.h> |
|
#include <THC/THCAtomics.cuh> |
|
#include <stdio.h> |
|
#include <math.h> |
|
#include <algorithm> |
|
|
|
using namespace at; |
|
|
|
#define CUDA_KERNEL_LOOP(i, n) \ |
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ |
|
i < (n); \ |
|
i += blockDim.x * gridDim.x) |
|
|
|
const int CUDA_NUM_THREADS = 1024; |
|
inline int GET_BLOCKS(const int N) |
|
{ |
|
return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS; |
|
} |
|
|
|
template <typename scalar_t> |
|
__device__ scalar_t bilinear_interp( |
|
const scalar_t *data, |
|
const scalar_t x, |
|
const scalar_t y, |
|
const int width, |
|
const int height) |
|
{ |
|
int x1 = floor(x); |
|
int x2 = ceil(x); |
|
int y1 = floor(y); |
|
int y2 = ceil(y); |
|
scalar_t dist_x = (scalar_t)(x - x1); |
|
scalar_t dist_y = (scalar_t)(y - y1); |
|
scalar_t value11 = data[y1 * width + x1]; |
|
scalar_t value12 = data[y2 * width + x1]; |
|
scalar_t value21 = data[y1 * width + x2]; |
|
scalar_t value22 = data[y2 * width + x2]; |
|
scalar_t value = (1 - dist_x) * (1 - dist_y) * value11 + (1 - dist_x) * dist_y * value12 + dist_x * (1 - dist_y) * value21 + dist_x * dist_y * value22; |
|
return value; |
|
} |
|
|
|
template <typename scalar_t> |
|
__global__ void DeformablePSROIPoolForwardKernel( |
|
const int count, |
|
const scalar_t *bottom_data, |
|
const scalar_t spatial_scale, |
|
const int channels, |
|
const int height, const int width, |
|
const int pooled_height, const int pooled_width, |
|
const scalar_t *bottom_rois, const scalar_t *bottom_trans, |
|
const int no_trans, |
|
const scalar_t trans_std, |
|
const int sample_per_part, |
|
const int output_dim, |
|
const int group_size, |
|
const int part_size, |
|
const int num_classes, |
|
const int channels_each_class, |
|
scalar_t *top_data, |
|
scalar_t *top_count) |
|
{ |
|
CUDA_KERNEL_LOOP(index, count) |
|
{ |
|
|
|
int pw = index % pooled_width; |
|
int ph = (index / pooled_width) % pooled_height; |
|
int ctop = (index / pooled_width / pooled_height) % output_dim; |
|
int n = index / pooled_width / pooled_height / output_dim; |
|
|
|
|
|
const scalar_t *offset_bottom_rois = bottom_rois + n * 5; |
|
int roi_batch_ind = offset_bottom_rois[0]; |
|
scalar_t roi_start_w = (scalar_t)(round(offset_bottom_rois[1])) * spatial_scale - 0.5; |
|
scalar_t roi_start_h = (scalar_t)(round(offset_bottom_rois[2])) * spatial_scale - 0.5; |
|
scalar_t roi_end_w = (scalar_t)(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5; |
|
scalar_t roi_end_h = (scalar_t)(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5; |
|
|
|
|
|
scalar_t roi_width = max(roi_end_w - roi_start_w, 0.1); |
|
scalar_t roi_height = max(roi_end_h - roi_start_h, 0.1); |
|
|
|
|
|
scalar_t bin_size_h = roi_height / (scalar_t)(pooled_height); |
|
scalar_t bin_size_w = roi_width / (scalar_t)(pooled_width); |
|
|
|
scalar_t sub_bin_size_h = bin_size_h / (scalar_t)(sample_per_part); |
|
scalar_t sub_bin_size_w = bin_size_w / (scalar_t)(sample_per_part); |
|
|
|
int part_h = floor((scalar_t)(ph) / pooled_height * part_size); |
|
int part_w = floor((scalar_t)(pw) / pooled_width * part_size); |
|
int class_id = ctop / channels_each_class; |
|
scalar_t trans_x = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; |
|
scalar_t trans_y = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; |
|
|
|
scalar_t wstart = (scalar_t)(pw)*bin_size_w + roi_start_w; |
|
wstart += trans_x * roi_width; |
|
scalar_t hstart = (scalar_t)(ph)*bin_size_h + roi_start_h; |
|
hstart += trans_y * roi_height; |
|
|
|
scalar_t sum = 0; |
|
int count = 0; |
|
int gw = floor((scalar_t)(pw)*group_size / pooled_width); |
|
int gh = floor((scalar_t)(ph)*group_size / pooled_height); |
|
gw = min(max(gw, 0), group_size - 1); |
|
gh = min(max(gh, 0), group_size - 1); |
|
|
|
const scalar_t *offset_bottom_data = bottom_data + (roi_batch_ind * channels) * height * width; |
|
for (int ih = 0; ih < sample_per_part; ih++) |
|
{ |
|
for (int iw = 0; iw < sample_per_part; iw++) |
|
{ |
|
scalar_t w = wstart + iw * sub_bin_size_w; |
|
scalar_t h = hstart + ih * sub_bin_size_h; |
|
|
|
if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) |
|
{ |
|
continue; |
|
} |
|
w = min(max(w, 0.), width - 1.); |
|
h = min(max(h, 0.), height - 1.); |
|
int c = (ctop * group_size + gh) * group_size + gw; |
|
scalar_t val = bilinear_interp(offset_bottom_data + c * height * width, w, h, width, height); |
|
sum += val; |
|
count++; |
|
} |
|
} |
|
top_data[index] = count == 0 ? (scalar_t)(0) : sum / count; |
|
top_count[index] = count; |
|
} |
|
} |
|
|
|
template <typename scalar_t> |
|
__global__ void DeformablePSROIPoolBackwardAccKernel( |
|
const int count, |
|
const scalar_t *top_diff, |
|
const scalar_t *top_count, |
|
const int num_rois, |
|
const scalar_t spatial_scale, |
|
const int channels, |
|
const int height, const int width, |
|
const int pooled_height, const int pooled_width, |
|
const int output_dim, |
|
scalar_t *bottom_data_diff, scalar_t *bottom_trans_diff, |
|
const scalar_t *bottom_data, |
|
const scalar_t *bottom_rois, |
|
const scalar_t *bottom_trans, |
|
const int no_trans, |
|
const scalar_t trans_std, |
|
const int sample_per_part, |
|
const int group_size, |
|
const int part_size, |
|
const int num_classes, |
|
const int channels_each_class) |
|
{ |
|
CUDA_KERNEL_LOOP(index, count) |
|
{ |
|
|
|
int pw = index % pooled_width; |
|
int ph = (index / pooled_width) % pooled_height; |
|
int ctop = (index / pooled_width / pooled_height) % output_dim; |
|
int n = index / pooled_width / pooled_height / output_dim; |
|
|
|
|
|
const scalar_t *offset_bottom_rois = bottom_rois + n * 5; |
|
int roi_batch_ind = offset_bottom_rois[0]; |
|
scalar_t roi_start_w = (scalar_t)(round(offset_bottom_rois[1])) * spatial_scale - 0.5; |
|
scalar_t roi_start_h = (scalar_t)(round(offset_bottom_rois[2])) * spatial_scale - 0.5; |
|
scalar_t roi_end_w = (scalar_t)(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5; |
|
scalar_t roi_end_h = (scalar_t)(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5; |
|
|
|
|
|
scalar_t roi_width = max(roi_end_w - roi_start_w, 0.1); |
|
scalar_t roi_height = max(roi_end_h - roi_start_h, 0.1); |
|
|
|
|
|
scalar_t bin_size_h = roi_height / (scalar_t)(pooled_height); |
|
scalar_t bin_size_w = roi_width / (scalar_t)(pooled_width); |
|
|
|
scalar_t sub_bin_size_h = bin_size_h / (scalar_t)(sample_per_part); |
|
scalar_t sub_bin_size_w = bin_size_w / (scalar_t)(sample_per_part); |
|
|
|
int part_h = floor((scalar_t)(ph) / pooled_height * part_size); |
|
int part_w = floor((scalar_t)(pw) / pooled_width * part_size); |
|
int class_id = ctop / channels_each_class; |
|
scalar_t trans_x = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; |
|
scalar_t trans_y = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; |
|
|
|
scalar_t wstart = (scalar_t)(pw)*bin_size_w + roi_start_w; |
|
wstart += trans_x * roi_width; |
|
scalar_t hstart = (scalar_t)(ph)*bin_size_h + roi_start_h; |
|
hstart += trans_y * roi_height; |
|
|
|
if (top_count[index] <= 0) |
|
{ |
|
continue; |
|
} |
|
scalar_t diff_val = top_diff[index] / top_count[index]; |
|
const scalar_t *offset_bottom_data = bottom_data + roi_batch_ind * channels * height * width; |
|
scalar_t *offset_bottom_data_diff = bottom_data_diff + roi_batch_ind * channels * height * width; |
|
int gw = floor((scalar_t)(pw)*group_size / pooled_width); |
|
int gh = floor((scalar_t)(ph)*group_size / pooled_height); |
|
gw = min(max(gw, 0), group_size - 1); |
|
gh = min(max(gh, 0), group_size - 1); |
|
|
|
for (int ih = 0; ih < sample_per_part; ih++) |
|
{ |
|
for (int iw = 0; iw < sample_per_part; iw++) |
|
{ |
|
scalar_t w = wstart + iw * sub_bin_size_w; |
|
scalar_t h = hstart + ih * sub_bin_size_h; |
|
|
|
if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) |
|
{ |
|
continue; |
|
} |
|
w = min(max(w, 0.), width - 1.); |
|
h = min(max(h, 0.), height - 1.); |
|
int c = (ctop * group_size + gh) * group_size + gw; |
|
|
|
int x0 = floor(w); |
|
int x1 = ceil(w); |
|
int y0 = floor(h); |
|
int y1 = ceil(h); |
|
scalar_t dist_x = w - x0, dist_y = h - y0; |
|
scalar_t q00 = (1 - dist_x) * (1 - dist_y); |
|
scalar_t q01 = (1 - dist_x) * dist_y; |
|
scalar_t q10 = dist_x * (1 - dist_y); |
|
scalar_t q11 = dist_x * dist_y; |
|
int bottom_index_base = c * height * width; |
|
atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x0, q00 * diff_val); |
|
atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x0, q01 * diff_val); |
|
atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x1, q10 * diff_val); |
|
atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x1, q11 * diff_val); |
|
|
|
if (no_trans) |
|
{ |
|
continue; |
|
} |
|
scalar_t U00 = offset_bottom_data[bottom_index_base + y0 * width + x0]; |
|
scalar_t U01 = offset_bottom_data[bottom_index_base + y1 * width + x0]; |
|
scalar_t U10 = offset_bottom_data[bottom_index_base + y0 * width + x1]; |
|
scalar_t U11 = offset_bottom_data[bottom_index_base + y1 * width + x1]; |
|
scalar_t diff_x = (U11 * dist_y + U10 * (1 - dist_y) - U01 * dist_y - U00 * (1 - dist_y)) * trans_std * diff_val; |
|
diff_x *= roi_width; |
|
scalar_t diff_y = (U11 * dist_x + U01 * (1 - dist_x) - U10 * dist_x - U00 * (1 - dist_x)) * trans_std * diff_val; |
|
diff_y *= roi_height; |
|
|
|
atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w, diff_x); |
|
atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w, diff_y); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void DeformablePSROIPoolForward(const at::Tensor data, |
|
const at::Tensor bbox, |
|
const at::Tensor trans, |
|
at::Tensor out, |
|
at::Tensor top_count, |
|
const int batch, |
|
const int channels, |
|
const int height, |
|
const int width, |
|
const int num_bbox, |
|
const int channels_trans, |
|
const int no_trans, |
|
const float spatial_scale, |
|
const int output_dim, |
|
const int group_size, |
|
const int pooled_size, |
|
const int part_size, |
|
const int sample_per_part, |
|
const float trans_std) |
|
{ |
|
const int pooled_height = pooled_size; |
|
const int pooled_width = pooled_size; |
|
const int count = num_bbox * output_dim * pooled_height * pooled_width; |
|
const int num_classes = no_trans ? 1 : channels_trans / 2; |
|
const int channels_each_class = no_trans ? output_dim : output_dim / num_classes; |
|
|
|
AT_DISPATCH_FLOATING_TYPES_AND_HALF( |
|
data.scalar_type(), "deformable_psroi_pool_forward", ([&] { |
|
const scalar_t *bottom_data = data.data_ptr<scalar_t>(); |
|
const scalar_t *bottom_rois = bbox.data_ptr<scalar_t>(); |
|
const scalar_t *bottom_trans = no_trans ? NULL : trans.data_ptr<scalar_t>(); |
|
scalar_t *top_data = out.data_ptr<scalar_t>(); |
|
scalar_t *top_count_data = top_count.data_ptr<scalar_t>(); |
|
|
|
DeformablePSROIPoolForwardKernel<<<GET_BLOCKS(count), CUDA_NUM_THREADS>>>( |
|
count, bottom_data, (scalar_t)spatial_scale, channels, height, width, pooled_height, pooled_width, |
|
bottom_rois, bottom_trans, no_trans, (scalar_t)trans_std, sample_per_part, output_dim, |
|
group_size, part_size, num_classes, channels_each_class, top_data, top_count_data); |
|
})); |
|
|
|
cudaError_t err = cudaGetLastError(); |
|
if (err != cudaSuccess) |
|
{ |
|
printf("error in DeformablePSROIPoolForward: %s\n", cudaGetErrorString(err)); |
|
} |
|
} |
|
|
|
void DeformablePSROIPoolBackwardAcc(const at::Tensor out_grad, |
|
const at::Tensor data, |
|
const at::Tensor bbox, |
|
const at::Tensor trans, |
|
const at::Tensor top_count, |
|
at::Tensor in_grad, |
|
at::Tensor trans_grad, |
|
const int batch, |
|
const int channels, |
|
const int height, |
|
const int width, |
|
const int num_bbox, |
|
const int channels_trans, |
|
const int no_trans, |
|
const float spatial_scale, |
|
const int output_dim, |
|
const int group_size, |
|
const int pooled_size, |
|
const int part_size, |
|
const int sample_per_part, |
|
const float trans_std) |
|
{ |
|
|
|
const int num_rois = num_bbox; |
|
const int pooled_height = pooled_size; |
|
const int pooled_width = pooled_size; |
|
const int count = num_bbox * output_dim * pooled_height * pooled_width; |
|
const int num_classes = no_trans ? 1 : channels_trans / 2; |
|
const int channels_each_class = no_trans ? output_dim : output_dim / num_classes; |
|
|
|
AT_DISPATCH_FLOATING_TYPES_AND_HALF( |
|
out_grad.scalar_type(), "deformable_psroi_pool_backward_acc", ([&] { |
|
const scalar_t *top_diff = out_grad.data_ptr<scalar_t>(); |
|
const scalar_t *bottom_data = data.data_ptr<scalar_t>(); |
|
const scalar_t *bottom_rois = bbox.data_ptr<scalar_t>(); |
|
const scalar_t *bottom_trans = no_trans ? NULL : trans.data_ptr<scalar_t>(); |
|
scalar_t *bottom_data_diff = in_grad.data_ptr<scalar_t>(); |
|
scalar_t *bottom_trans_diff = no_trans ? NULL : trans_grad.data_ptr<scalar_t>(); |
|
const scalar_t *top_count_data = top_count.data_ptr<scalar_t>(); |
|
|
|
DeformablePSROIPoolBackwardAccKernel<<<GET_BLOCKS(count), CUDA_NUM_THREADS>>>( |
|
count, top_diff, top_count_data, num_rois, (scalar_t)spatial_scale, channels, height, width, |
|
pooled_height, pooled_width, output_dim, bottom_data_diff, bottom_trans_diff, |
|
bottom_data, bottom_rois, bottom_trans, no_trans, (scalar_t)trans_std, sample_per_part, |
|
group_size, part_size, num_classes, channels_each_class); |
|
})); |
|
|
|
cudaError_t err = cudaGetLastError(); |
|
if (err != cudaSuccess) |
|
{ |
|
printf("error in DeformablePSROIPoolForward: %s\n", cudaGetErrorString(err)); |
|
} |
|
} |