|
|
|
from . import transforms as T |
|
|
|
|
|
def build_transforms(cfg, is_train=True): |
|
if is_train: |
|
if len(cfg.AUGMENT.MULT_MIN_SIZE_TRAIN)>0: |
|
min_size = cfg.AUGMENT.MULT_MIN_SIZE_TRAIN |
|
else: |
|
min_size = cfg.INPUT.MIN_SIZE_TRAIN |
|
max_size = cfg.INPUT.MAX_SIZE_TRAIN |
|
flip_horizontal_prob = cfg.AUGMENT.FLIP_PROB_TRAIN |
|
flip_vertical_prob = cfg.AUGMENT.VERTICAL_FLIP_PROB_TRAIN |
|
brightness = cfg.AUGMENT.BRIGHTNESS |
|
contrast = cfg.AUGMENT.CONTRAST |
|
saturation = cfg.AUGMENT.SATURATION |
|
hue = cfg.AUGMENT.HUE |
|
|
|
crop_prob = cfg.AUGMENT.CROP_PROB |
|
min_ious = cfg.AUGMENT.CROP_MIN_IOUS |
|
min_crop_size = cfg.AUGMENT.CROP_MIN_SIZE |
|
|
|
else: |
|
min_size = cfg.INPUT.MIN_SIZE_TEST |
|
max_size = cfg.INPUT.MAX_SIZE_TEST |
|
flip_horizontal_prob = 0.0 |
|
|
|
fix_res = cfg.INPUT.FIX_RES |
|
if cfg.INPUT.FORMAT is not '': |
|
input_format = cfg.INPUT.FORMAT |
|
elif cfg.INPUT.TO_BGR255: |
|
input_format = 'bgr255' |
|
normalize_transform = T.Normalize( |
|
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD, format=input_format |
|
) |
|
|
|
transform = T.Compose( |
|
[ |
|
T.Resize(min_size, max_size, restrict=fix_res), |
|
T.RandomHorizontalFlip(flip_horizontal_prob), |
|
T.ToTensor(), |
|
normalize_transform, |
|
] |
|
) |
|
return transform |
|
|