|
|
|
import cv2 |
|
import random |
|
import numpy as np |
|
import math |
|
import torch |
|
import torchvision |
|
from torchvision.transforms import functional as F |
|
|
|
from maskrcnn_benchmark.structures.bounding_box import BoxList |
|
|
|
def matrix_iou(a, b, relative=False): |
|
""" |
|
return iou of a and b, numpy version for data augenmentation |
|
""" |
|
lt = np.maximum(a[:, np.newaxis, :2], b[:, :2]) |
|
rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) |
|
|
|
area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2) |
|
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) |
|
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) |
|
if relative: |
|
ious = area_i / (area_b[:, np.newaxis]+1e-12) |
|
else: |
|
ious = area_i / (area_a[:, np.newaxis] + area_b - area_i+1e-12) |
|
return ious |
|
|
|
|
|
class RACompose(object): |
|
def __init__(self, pre_transforms, rand_transforms, post_transforms, concurrent=2): |
|
self.preprocess = pre_transforms |
|
self.transforms = post_transforms |
|
self.rand_transforms = rand_transforms |
|
self.concurrent = concurrent |
|
|
|
def __call__(self, image, target): |
|
for t in self.preprocess: |
|
image, target = t(image, target) |
|
for t in random.choices(self.rand_transforms, k=self.concurrent): |
|
image = np.array(image) |
|
image, target = t(image, target) |
|
for t in self.transforms: |
|
image, target = t(image, target) |
|
|
|
return image, target |
|
|
|
def __repr__(self): |
|
format_string = self.__class__.__name__ + "(" |
|
for t in self.preprocess: |
|
format_string += "\n" |
|
format_string += " {0}".format(t) |
|
format_string += "\nRandom select {0} from: (".format(self.concurrent) |
|
for t in self.rand_transforms: |
|
format_string += "\n" |
|
format_string += " {0}".format(t) |
|
format_string += ")\nThen, apply:" |
|
for t in self.transforms: |
|
format_string += "\n" |
|
format_string += " {0}".format(t) |
|
format_string += "\n)" |
|
return format_string |
|
|
|
|
|
class Compose(object): |
|
def __init__(self, transforms): |
|
self.transforms = transforms |
|
|
|
def __call__(self, image, target=None): |
|
for t in self.transforms: |
|
image, target = t(image, target) |
|
if target is None: |
|
return image |
|
return image, target |
|
|
|
def __repr__(self): |
|
format_string = self.__class__.__name__ + "(" |
|
for t in self.transforms: |
|
format_string += "\n" |
|
format_string += " {0}".format(t) |
|
format_string += "\n)" |
|
return format_string |
|
|
|
|
|
class Resize(object): |
|
def __init__(self, min_size, max_size, restrict=False): |
|
if not isinstance(min_size, (list, tuple)): |
|
min_size = (min_size,) |
|
self.min_size = min_size |
|
self.max_size = max_size |
|
self.restrict = restrict |
|
|
|
|
|
def get_size(self, image_size): |
|
w, h = image_size |
|
size = random.choice(self.min_size) |
|
max_size = self.max_size |
|
if self.restrict: |
|
return (size, max_size) |
|
if max_size is not None: |
|
min_original_size = float(min((w, h))) |
|
max_original_size = float(max((w, h))) |
|
if max_original_size / min_original_size * size > max_size: |
|
size = int(round(max_size * min_original_size / max_original_size)) |
|
|
|
if (w <= h and w == size) or (h <= w and h == size): |
|
return (h, w) |
|
|
|
if w < h: |
|
ow = size |
|
oh = int(size * h / w) |
|
else: |
|
oh = size |
|
ow = int(size * w / h) |
|
|
|
return (oh, ow) |
|
|
|
def __call__(self, image, target): |
|
if isinstance(image, np.ndarray): |
|
image_size = self.get_size(image.shape[:2]) |
|
image = cv2.resize(image, image_size) |
|
new_size = image_size |
|
else: |
|
image = F.resize(image, self.get_size(image.size)) |
|
new_size = image.size |
|
if target is not None: |
|
target = target.resize(new_size) |
|
return image, target |
|
|
|
|
|
class RandomHorizontalFlip(object): |
|
def __init__(self, prob=0.5): |
|
self.prob = prob |
|
|
|
def __call__(self, image, target): |
|
if random.random() < self.prob: |
|
if isinstance(image, np.ndarray): |
|
image = np.fliplr(image) |
|
else: |
|
image = F.hflip(image) |
|
if target is not None: |
|
target = target.transpose(0) |
|
return image, target |
|
|
|
|
|
class RandomVerticalFlip(object): |
|
def __init__(self, prob=0.5): |
|
self.prob = prob |
|
|
|
def __call__(self, image, target): |
|
if random.random() < self.prob: |
|
if isinstance(image, np.ndarray): |
|
image = np.flipud(image) |
|
else: |
|
image = F.vflip(image) |
|
target = target.transpose(1) |
|
return image, target |
|
|
|
class ToTensor(object): |
|
def __call__(self, image, target): |
|
return F.to_tensor(image), target |
|
|
|
|
|
class Normalize(object): |
|
def __init__(self, mean, std, format='rgb'): |
|
self.mean = mean |
|
self.std = std |
|
self.format = format.lower() |
|
|
|
def __call__(self, image, target): |
|
if 'bgr' in self.format: |
|
image = image[[2, 1, 0]] |
|
if '255' in self.format: |
|
image = image * 255 |
|
image = F.normalize(image, mean=self.mean, std=self.std) |
|
return image, target |
|
|
|
|
|
class ColorJitter(object): |
|
def __init__(self, |
|
brightness=0.0, |
|
contrast=0.0, |
|
saturation=0.0, |
|
hue=0.0, |
|
): |
|
self.color_jitter = torchvision.transforms.ColorJitter( |
|
brightness=brightness, |
|
contrast=contrast, |
|
saturation=saturation, |
|
hue=hue,) |
|
|
|
def __call__(self, image, target): |
|
image = self.color_jitter(image) |
|
return image, target |
|
|
|
|
|
class RandomCrop(object): |
|
def __init__(self, prob=0.5, min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3): |
|
|
|
self.prob = prob |
|
self.sample_mode = (1, *min_ious, 0) |
|
self.min_crop_size = min_crop_size |
|
|
|
def __call__(self, img, target): |
|
if random.random() > self.prob: |
|
return img, target |
|
|
|
h, w, c = img.shape |
|
boxes = target.bbox.numpy() |
|
labels = target.get_field('labels') |
|
|
|
while True: |
|
mode = random.choice(self.sample_mode) |
|
if mode == 1: |
|
return img, target |
|
|
|
min_iou = mode |
|
|
|
new_w = random.uniform(self.min_crop_size * w, w) |
|
new_h = random.uniform(self.min_crop_size * h, h) |
|
|
|
|
|
if new_h / new_w < 0.5 or new_h / new_w > 2: |
|
continue |
|
|
|
left = random.uniform(0, w - new_w) |
|
top = random.uniform(0, h - new_h) |
|
|
|
patch = np.array([left, top, left + new_w, top + new_h]) |
|
overlaps = matrix_iou(patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1) |
|
if overlaps.min() < min_iou: |
|
continue |
|
|
|
|
|
center = (boxes[:, :2] + boxes[:, 2:]) / 2 |
|
mask = (center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * (center[:, 0] < patch[2]) * ( center[:, 1] < patch[3]) |
|
if not mask.any(): |
|
continue |
|
|
|
boxes = boxes[mask] |
|
labels = labels[mask] |
|
|
|
|
|
img = img[int(patch[1]):int(patch[3]), int(patch[0]):int(patch[2])] |
|
|
|
boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:]) |
|
boxes[:, :2] = boxes[:, :2].clip(min=patch[:2]) |
|
boxes -= np.tile(patch[:2], 2) |
|
|
|
new_target = BoxList(boxes, (img.shape[1], img.shape[0]), mode='xyxy') |
|
new_target.add_field('labels', labels) |
|
return img, new_target |
|
|
|
|
|
class RandomAffine(object): |
|
def __init__(self, prob=0.5, degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-2, 2), |
|
borderValue=(127.5, 127.5, 127.5)): |
|
self.prob = prob |
|
self.degrees = degrees |
|
self.translate = translate |
|
self.scale = scale |
|
self.shear = shear |
|
self.borderValue = borderValue |
|
|
|
def __call__(self, img, targets=None): |
|
if random.random() > self.prob: |
|
return img, targets |
|
|
|
|
|
|
|
border = 0 |
|
|
|
height, width, _ = img.shape |
|
bbox = targets.bbox |
|
|
|
|
|
R = np.eye(3) |
|
a = random.random() * (self.degrees[1] - self.degrees[0]) + self.degrees[0] |
|
|
|
s = random.random() * (self.scale[1] - self.scale[0]) + self.scale[0] |
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s) |
|
|
|
|
|
T = np.eye(3) |
|
T[0, 2] = (random.random() * 2 - 1) * self.translate[0] * img.shape[0] + border |
|
T[1, 2] = (random.random() * 2 - 1) * self.translate[1] * img.shape[1] + border |
|
|
|
|
|
S = np.eye(3) |
|
S[0, 1] = math.tan((random.random() * (self.shear[1] - self.shear[0]) + self.shear[0]) * math.pi / 180) |
|
S[1, 0] = math.tan((random.random() * (self.shear[1] - self.shear[0]) + self.shear[0]) * math.pi / 180) |
|
|
|
M = S @ T @ R |
|
imw = cv2.warpPerspective(img, M, dsize=(width, height), flags=cv2.INTER_LINEAR, |
|
borderValue=self.borderValue) |
|
|
|
|
|
if targets: |
|
n = bbox.shape[0] |
|
points = bbox[:, 0:4] |
|
area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1]) |
|
|
|
|
|
xy = np.ones((n * 4, 3)) |
|
xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) |
|
xy = (xy @ M.T)[:, :2].reshape(n, 8) |
|
|
|
|
|
x = xy[:, [0, 2, 4, 6]] |
|
y = xy[:, [1, 3, 5, 7]] |
|
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T |
|
|
|
|
|
radians = a * math.pi / 180 |
|
reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5 |
|
x = (xy[:, 2] + xy[:, 0]) / 2 |
|
y = (xy[:, 3] + xy[:, 1]) / 2 |
|
w = (xy[:, 2] - xy[:, 0]) * reduction |
|
h = (xy[:, 3] - xy[:, 1]) * reduction |
|
xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T |
|
|
|
|
|
x1 = np.clip(xy[:,0], 0, width) |
|
y1 = np.clip(xy[:,1], 0, height) |
|
x2 = np.clip(xy[:,2], 0, width) |
|
y2 = np.clip(xy[:,3], 0, height) |
|
new_bbox = np.concatenate((x1, y1, x2, y2)).reshape(4, n).T |
|
targets.bbox = torch.as_tensor(new_bbox, dtype=torch.float32) |
|
|
|
return imw, targets |
|
|
|
|
|
class RandomErasing: |
|
def __init__(self, prob=0.5, era_l=0.02, era_h=1/3, min_aspect=0.3, |
|
mode='const', max_count=1, max_overlap=0.3, max_value=255): |
|
self.prob = prob |
|
self.era_l = era_l |
|
self.era_h = era_h |
|
self.min_aspect = min_aspect |
|
self.min_count = 1 |
|
self.max_count = max_count |
|
self.max_overlap = max_overlap |
|
self.max_value = max_value |
|
self.mode = mode.lower() |
|
assert self.mode in ['const', 'rand', 'pixel'], 'invalid erase mode: %s' % self.mode |
|
|
|
def _get_pixels(self, patch_size): |
|
if self.mode == 'pixel': |
|
return np.random.random(patch_size)*self.max_value |
|
elif self.mode == 'rand': |
|
return np.random.random((1, 1, patch_size[-1]))*self.max_value |
|
else: |
|
return np.zeros((1, 1, patch_size[-1])) |
|
|
|
def __call__(self, image, target): |
|
if random.random() > self.prob: |
|
return image, target |
|
ih, iw, ic = image.shape |
|
ia = ih * iw |
|
count = self.min_count if self.min_count == self.max_count else \ |
|
random.randint(self.min_count, self.max_count) |
|
erase_boxes = [] |
|
for _ in range(count): |
|
for try_idx in range(10): |
|
erase_area = random.uniform(self.era_l, self.era_h) * ia / count |
|
aspect_ratio = math.exp(random.uniform(math.log(self.min_aspect), math.log(1/self.min_aspect))) |
|
eh = int(round(math.sqrt(erase_area * aspect_ratio))) |
|
ew = int(round(math.sqrt(erase_area / aspect_ratio))) |
|
if eh < ih and ew < iw: |
|
x = random.randint(0, iw - ew) |
|
y = random.randint(0, ih - eh) |
|
image[y:y+eh, x:x+ew, :] = self._get_pixels((eh, ew, ic)) |
|
erase_boxes.append([x,y,x+ew,y+eh]) |
|
break |
|
|
|
if target is not None and len(erase_boxes)>0: |
|
boxes = target.bbox.numpy() |
|
labels = target.get_field('labels') |
|
overlap = matrix_iou(np.array(erase_boxes), boxes, relative=True) |
|
mask = overlap.max(axis=0)<self.max_overlap |
|
boxes = boxes[mask] |
|
labels = labels[mask] |
|
target.bbox = torch.as_tensor(boxes, dtype=torch.float32) |
|
target.add_field('labels', labels) |
|
|
|
return image, target |
|
|