|
|
|
import time |
|
import pickle |
|
import logging |
|
import os |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
from collections import OrderedDict |
|
from yaml import safe_dump |
|
from yacs.config import load_cfg, CfgNode |
|
from maskrcnn_benchmark.config import cfg |
|
from maskrcnn_benchmark.engine.inference import _accumulate_predictions_from_multiple_gpus |
|
from maskrcnn_benchmark.modeling.backbone.nas import get_layer_name |
|
from maskrcnn_benchmark.utils.comm import synchronize, get_rank, is_main_process, get_world_size, all_gather |
|
from maskrcnn_benchmark.data.datasets.evaluation import evaluate |
|
from maskrcnn_benchmark.utils.flops import profile |
|
|
|
|
|
choice = lambda x:x[np.random.randint(len(x))] if isinstance(x,tuple) else choice(tuple(x)) |
|
|
|
|
|
def gather_candidates(all_candidates): |
|
all_candidates = all_gather(all_candidates) |
|
all_candidates = [cand for candidates in all_candidates for cand in candidates] |
|
return list(set(all_candidates)) |
|
|
|
|
|
def gather_stats(all_candidates): |
|
all_candidates = all_gather(all_candidates) |
|
reduced_statcs = {} |
|
for candidates in all_candidates: |
|
reduced_statcs.update(candidates) |
|
return reduced_statcs |
|
|
|
|
|
def compute_on_dataset(model, rngs, data_loader, device=cfg.MODEL.DEVICE): |
|
model.eval() |
|
results_dict = {} |
|
cpu_device = torch.device("cpu") |
|
for _, batch in enumerate(data_loader): |
|
images, targets, image_ids = batch |
|
with torch.no_grad(): |
|
output = model(images.to(device), rngs=rngs) |
|
output = [o.to(cpu_device) for o in output] |
|
results_dict.update( |
|
{img_id: result for img_id, result in zip(image_ids, output)} |
|
) |
|
return results_dict |
|
|
|
|
|
def bn_statistic(model, rngs, data_loader, device=cfg.MODEL.DEVICE, max_iter=500): |
|
for name, param in model.named_buffers(): |
|
if 'running_mean' in name: |
|
nn.init.constant_(param, 0) |
|
if 'running_var' in name: |
|
nn.init.constant_(param, 1) |
|
|
|
model.train() |
|
for iteration, (images, targets, _) in enumerate(data_loader, 1): |
|
images = images.to(device) |
|
targets = [target.to(device) for target in targets] |
|
with torch.no_grad(): |
|
loss_dict = model(images, targets, rngs) |
|
if iteration >= max_iter: |
|
break |
|
|
|
return model |
|
|
|
|
|
def inference( |
|
model, |
|
rngs, |
|
data_loader, |
|
iou_types=("bbox",), |
|
box_only=False, |
|
device="cuda", |
|
expected_results=(), |
|
expected_results_sigma_tol=4, |
|
output_folder=None, |
|
): |
|
|
|
|
|
device = torch.device(device) |
|
dataset = data_loader.dataset |
|
predictions = compute_on_dataset(model, rngs, data_loader, device) |
|
|
|
synchronize() |
|
|
|
predictions = _accumulate_predictions_from_multiple_gpus(predictions) |
|
if not is_main_process(): |
|
return |
|
|
|
extra_args = dict( |
|
box_only=box_only, |
|
iou_types=iou_types, |
|
expected_results=expected_results, |
|
expected_results_sigma_tol=expected_results_sigma_tol, |
|
) |
|
|
|
return evaluate(dataset=dataset, |
|
predictions=predictions, |
|
output_folder=output_folder, |
|
**extra_args) |
|
|
|
|
|
def fitness(cfg, model, rngs, val_loaders): |
|
iou_types = ("bbox",) |
|
if cfg.MODEL.MASK_ON: |
|
iou_types = iou_types + ("segm",) |
|
for data_loader_val in val_loaders: |
|
results = inference( |
|
model, |
|
rngs, |
|
data_loader_val, |
|
iou_types=iou_types, |
|
box_only=False, |
|
device=cfg.MODEL.DEVICE, |
|
expected_results=cfg.TEST.EXPECTED_RESULTS, |
|
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, |
|
) |
|
synchronize() |
|
|
|
return results |
|
|
|
|
|
class EvolutionTrainer(object): |
|
def __init__(self, cfg, model, flops_limit=None, is_distributed=True): |
|
|
|
self.log_dir = cfg.OUTPUT_DIR |
|
self.checkpoint_name = os.path.join(self.log_dir,'evolution.pth') |
|
self.is_distributed = is_distributed |
|
|
|
self.states = model.module.mix_nums if is_distributed else model.mix_nums |
|
self.supernet_state_dict = pickle.loads(pickle.dumps(model.state_dict())) |
|
self.flops_limit = flops_limit |
|
self.model = model |
|
|
|
self.candidates = [] |
|
self.vis_dict = {} |
|
|
|
self.max_epochs = cfg.SEARCH.MAX_EPOCH |
|
self.select_num = cfg.SEARCH.SELECT_NUM |
|
self.population_num = cfg.SEARCH.POPULATION_NUM/get_world_size() |
|
self.mutation_num = cfg.SEARCH.MUTATION_NUM/get_world_size() |
|
self.crossover_num = cfg.SEARCH.CROSSOVER_NUM/get_world_size() |
|
self.mutation_prob = cfg.SEARCH.MUTATION_PROB/get_world_size() |
|
|
|
self.keep_top_k = {self.select_num:[], 50:[]} |
|
self.epoch=0 |
|
self.cfg = cfg |
|
|
|
def save_checkpoint(self): |
|
if not is_main_process(): |
|
return |
|
if not os.path.exists(self.log_dir): |
|
os.makedirs(self.log_dir) |
|
info = {} |
|
info['candidates'] = self.candidates |
|
info['vis_dict'] = self.vis_dict |
|
info['keep_top_k'] = self.keep_top_k |
|
info['epoch'] = self.epoch |
|
torch.save(info, self.checkpoint_name) |
|
print('Save checkpoint to', self.checkpoint_name) |
|
|
|
def load_checkpoint(self): |
|
if not os.path.exists(self.checkpoint_name): |
|
return False |
|
info = torch.load(self.checkpoint_name) |
|
self.candidates = info['candidates'] |
|
self.vis_dict = info['vis_dict'] |
|
self.keep_top_k = info['keep_top_k'] |
|
self.epoch = info['epoch'] |
|
print('Load checkpoint from', self.checkpoint_name) |
|
return True |
|
|
|
def legal(self, cand): |
|
assert isinstance(cand,tuple) and len(cand)==len(self.states) |
|
if cand in self.vis_dict: |
|
return False |
|
|
|
if self.flops_limit is not None: |
|
net = self.model.module.backbone if self.is_distributed else self.model.backbone |
|
inp = (1, 3, 224, 224) |
|
flops, params = profile(net, inp, extra_args={'paths': list(cand)}) |
|
flops = flops/1e6 |
|
print('flops:',flops) |
|
if flops>self.flops_limit: |
|
return False |
|
|
|
return True |
|
|
|
def update_top_k(self, candidates, *, k, key, reverse=False): |
|
assert k in self.keep_top_k |
|
|
|
t = self.keep_top_k[k] |
|
t += candidates |
|
t.sort(key=key,reverse=reverse) |
|
self.keep_top_k[k]=t[:k] |
|
|
|
def eval_candidates(self, train_loader, val_loader): |
|
for cand in self.candidates: |
|
t0 = time.time() |
|
|
|
|
|
self.model.load_state_dict(self.supernet_state_dict) |
|
|
|
model = bn_statistic(self.model, list(cand), train_loader) |
|
|
|
evals = fitness(cfg, model, list(cand), val_loader) |
|
|
|
if is_main_process(): |
|
acc = evals[0].results['bbox']['AP'] |
|
self.vis_dict[cand] = acc |
|
print('candiate ', cand) |
|
print('time: {}s'.format(time.time() - t0)) |
|
print('acc ', acc) |
|
|
|
def stack_random_cand(self, random_func, *, batchsize=10): |
|
while True: |
|
cands = [random_func() for _ in range(batchsize)] |
|
for cand in cands: |
|
yield cand |
|
|
|
def random_can(self, num): |
|
|
|
candidates = [] |
|
cand_iter = self.stack_random_cand(lambda:tuple(np.random.randint(i) for i in self.states)) |
|
while len(candidates)<num: |
|
cand = next(cand_iter) |
|
|
|
if not self.legal(cand): |
|
continue |
|
candidates.append(cand) |
|
|
|
|
|
|
|
return candidates |
|
|
|
def get_mutation(self, k, mutation_num, m_prob): |
|
assert k in self.keep_top_k |
|
|
|
res = [] |
|
iter = 0 |
|
max_iters = mutation_num*10 |
|
|
|
def random_func(): |
|
cand = list(choice(self.keep_top_k[k])) |
|
for i in range(len(self.states)): |
|
if np.random.random_sample()<m_prob: |
|
cand[i] = np.random.randint(self.states[i]) |
|
return tuple(cand) |
|
|
|
cand_iter = self.stack_random_cand(random_func) |
|
while len(res)<mutation_num and max_iters>0: |
|
cand = next(cand_iter) |
|
if not self.legal(cand): |
|
continue |
|
res.append(cand) |
|
|
|
max_iters-=1 |
|
|
|
|
|
return res |
|
|
|
def get_crossover(self, k, crossover_num): |
|
assert k in self.keep_top_k |
|
|
|
res = [] |
|
iter = 0 |
|
max_iters = 10 * crossover_num |
|
|
|
def random_func(): |
|
p1=choice(self.keep_top_k[k]) |
|
p2=choice(self.keep_top_k[k]) |
|
return tuple(choice([i,j]) for i,j in zip(p1,p2)) |
|
|
|
cand_iter = self.stack_random_cand(random_func) |
|
while len(res)<crossover_num and max_iters>0: |
|
cand = next(cand_iter) |
|
if not self.legal(cand): |
|
continue |
|
res.append(cand) |
|
|
|
max_iters-=1 |
|
|
|
|
|
return res |
|
|
|
def train(self, train_loader, val_loader): |
|
logger = logging.getLogger("maskrcnn_benchmark.evolution") |
|
|
|
if not self.load_checkpoint(): |
|
self.candidates = gather_candidates(self.random_can(self.population_num)) |
|
|
|
while self.epoch<self.max_epochs: |
|
self.eval_candidates(train_loader, val_loader) |
|
self.vis_dict = gather_stats(self.vis_dict) |
|
|
|
self.update_top_k(self.candidates, k=self.select_num, key=lambda x:1-self.vis_dict[x]) |
|
self.update_top_k(self.candidates, k=50, key=lambda x:1-self.vis_dict[x]) |
|
|
|
if is_main_process(): |
|
logger.info('Epoch {} : top {} result'.format(self.epoch+1, len(self.keep_top_k[self.select_num]))) |
|
for i,cand in enumerate(self.keep_top_k[self.select_num]): |
|
logger.info(' No.{} {} perf = {}'.format(i+1, cand, self.vis_dict[cand])) |
|
|
|
mutation = gather_candidates(self.get_mutation(self.select_num, self.mutation_num, self.mutation_prob)) |
|
crossover = gather_candidates(self.get_crossover(self.select_num, self.crossover_num)) |
|
rand = gather_candidates(self.random_can(self.population_num - len(mutation) - len(crossover))) |
|
|
|
self.candidates = mutation + crossover + rand |
|
|
|
self.epoch+=1 |
|
self.save_checkpoint() |
|
|
|
def save_candidates(self, cand, template): |
|
paths = self.keep_top_k[self.select_num][cand-1] |
|
|
|
with open(template, "r") as f: |
|
super_cfg = load_cfg(f) |
|
|
|
search_spaces = {} |
|
for mix_ops in super_cfg.MODEL.BACKBONE.LAYER_SEARCH: |
|
search_spaces[mix_ops] = super_cfg.MODEL.BACKBONE.LAYER_SEARCH[mix_ops] |
|
search_layers = super_cfg.MODEL.BACKBONE.LAYER_SETUP |
|
|
|
layer_setup = [] |
|
for i, layer in enumerate(search_layers): |
|
name, setup = get_layer_name(layer, search_spaces) |
|
if not isinstance(name, list): |
|
name = [name] |
|
name = name[paths[i]] |
|
|
|
layer_setup.append("('{}', {})".format(name, str(setup)[1:-1])) |
|
super_cfg.MODEL.BACKBONE.LAYER_SETUP = layer_setup |
|
|
|
cand_cfg = _to_dict(super_cfg) |
|
del cand_cfg['MODEL']['BACKBONE']['LAYER_SEARCH'] |
|
with open(os.path.join(self.cfg.OUTPUT_DIR, os.path.basename(template)).replace('.yaml','_cand{}.yaml'.format(cand)), 'w') as f: |
|
f.writelines(safe_dump(cand_cfg)) |
|
|
|
super_weight = self.supernet_state_dict |
|
cand_weight = OrderedDict() |
|
cand_keys = ['layers.{}.ops.{}'.format(i, c) for i, c in enumerate(paths)] |
|
|
|
for key, val in super_weight.items(): |
|
if 'ops' in key: |
|
for ck in cand_keys: |
|
if ck in key: |
|
cand_weight[key.replace(ck,ck.split('.ops.')[0])] = val |
|
else: |
|
cand_weight[key] = val |
|
|
|
torch.save({'model':cand_weight}, os.path.join(self.cfg.OUTPUT_DIR, 'init_cand{}.pth'.format(cand))) |
|
|