|
|
|
import datetime |
|
import logging |
|
import time |
|
import os |
|
import re |
|
|
|
import torch |
|
from tqdm import tqdm |
|
from collections import defaultdict |
|
|
|
from maskrcnn_benchmark.data.datasets.evaluation import evaluate, im_detect_bbox_aug |
|
from ..utils.comm import is_main_process |
|
from ..utils.comm import all_gather |
|
from ..utils.comm import synchronize |
|
import pdb |
|
from maskrcnn_benchmark.data.datasets.evaluation.flickr.flickr_eval import FlickrEvaluator |
|
from maskrcnn_benchmark.structures.bounding_box import BoxList |
|
import matplotlib.pyplot as plt |
|
import matplotlib.pylab as pylab |
|
from maskrcnn_benchmark.data.datasets.tsv import load_from_yaml_file |
|
def imshow(img, file_name = "tmp.jpg"): |
|
plt.imshow(img[:, :, [2, 1, 0]]) |
|
plt.axis("off") |
|
|
|
plt.savefig(file_name) |
|
def load(url_or_file_name): |
|
try: |
|
response = requests.get(url_or_file_name) |
|
except: |
|
response = None |
|
if response is None: |
|
pil_image = Image.open(url_or_file_name).convert("RGB") |
|
else: |
|
pil_image = Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
image = np.array(pil_image)[:, :, [2, 1, 0]] |
|
return image |
|
def inference_default( |
|
model, |
|
data_loader, |
|
dataset_name, |
|
iou_types=("bbox",), |
|
box_only=False, |
|
device="cuda", |
|
expected_results=(), |
|
expected_results_sigma_tol=4, |
|
output_folder=None, |
|
cfg=None |
|
): |
|
|
|
device = torch.device(device) |
|
num_devices = ( |
|
torch.distributed.get_world_size() |
|
if torch.distributed.is_initialized() |
|
else 1 |
|
) |
|
logger = logging.getLogger("maskrcnn_benchmark.inference") |
|
dataset = data_loader.dataset |
|
logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset))) |
|
start_time = time.time() |
|
|
|
model.eval() |
|
results_dict = {} |
|
cpu_device = torch.device("cpu") |
|
for i, batch in enumerate(tqdm(data_loader)): |
|
images, targets, image_ids, *_ = batch |
|
with torch.no_grad(): |
|
if cfg.TEST.USE_MULTISCALE: |
|
output = im_detect_bbox_aug(model, images, device) |
|
else: |
|
output = model(images.to(device)) |
|
output = [o.to(cpu_device) for o in output] |
|
results_dict.update( |
|
{img_id: result for img_id, result in zip(image_ids, output)} |
|
) |
|
predictions = results_dict |
|
|
|
synchronize() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=total_time)) |
|
logger.info( |
|
"Total inference time: {} ({} s / img per device, on {} devices)".format( |
|
total_time_str, total_time * num_devices / len(dataset), num_devices |
|
) |
|
) |
|
|
|
predictions = _accumulate_predictions_from_multiple_gpus(predictions) |
|
if not is_main_process(): |
|
return None |
|
|
|
if output_folder: |
|
torch.save(predictions, os.path.join(output_folder, "predictions.pth")) |
|
|
|
extra_args = dict( |
|
box_only=box_only, |
|
iou_types=iou_types, |
|
expected_results=expected_results, |
|
expected_results_sigma_tol=expected_results_sigma_tol, |
|
) |
|
return evaluate(dataset=dataset, predictions=predictions, output_folder=output_folder, **extra_args) |
|
|
|
|
|
def clean_name(name): |
|
name = re.sub(r"\(.*\)", "", name) |
|
name = re.sub(r"_", " ", name) |
|
name = re.sub(r" ", " ", name) |
|
return name |
|
|
|
|
|
def create_one_hot_dict(labels, no_minus_one_for_one_hot = False): |
|
positive_map_token_to_label = defaultdict(int) |
|
positive_map_label_to_token = defaultdict(int) |
|
|
|
for i in range(len(labels)): |
|
positive_map_token_to_label[i] = labels[i] |
|
positive_map_label_to_token[labels[i]] = i |
|
|
|
if no_minus_one_for_one_hot: |
|
positive_map_token_to_label = defaultdict(int) |
|
positive_map_label_to_token = defaultdict(int) |
|
|
|
for i in range(len(labels)): |
|
positive_map_token_to_label[i+1] = labels[i] |
|
positive_map_label_to_token[labels[i]] = i + 1 |
|
|
|
return positive_map_token_to_label, positive_map_label_to_token |
|
|
|
|
|
def create_positive_dict(tokenized, tokens_positive, labels): |
|
"""construct a dictionary such that positive_map[i] = j, iff token i is mapped to j label""" |
|
positive_map = defaultdict(int) |
|
|
|
|
|
positive_map_label_to_token = defaultdict(list) |
|
|
|
for j, tok_list in enumerate(tokens_positive): |
|
for (beg, end) in tok_list: |
|
beg_pos = tokenized.char_to_token(beg) |
|
end_pos = tokenized.char_to_token(end - 1) |
|
if beg_pos is None: |
|
try: |
|
beg_pos = tokenized.char_to_token(beg + 1) |
|
if beg_pos is None: |
|
beg_pos = tokenized.char_to_token(beg + 2) |
|
except: |
|
beg_pos = None |
|
if end_pos is None: |
|
try: |
|
end_pos = tokenized.char_to_token(end - 2) |
|
if end_pos is None: |
|
end_pos = tokenized.char_to_token(end - 3) |
|
except: |
|
end_pos = None |
|
if beg_pos is None or end_pos is None: |
|
continue |
|
|
|
assert beg_pos is not None and end_pos is not None |
|
for i in range(beg_pos, end_pos + 1): |
|
positive_map[i] = labels[j] |
|
positive_map_label_to_token[labels[j]].append(i) |
|
|
|
return positive_map, positive_map_label_to_token |
|
|
|
def chunks(lst, n): |
|
"""Yield successive n-sized chunks from lst.""" |
|
all_ = [] |
|
for i in range(0, len(lst), n): |
|
data_index = lst[i:i + n] |
|
all_.append(data_index) |
|
counter = 0 |
|
for i in all_: |
|
counter += len(i) |
|
assert(counter == len(lst)) |
|
|
|
return all_ |
|
|
|
def create_queries_and_maps_from_dataset(dataset, cfg): |
|
categories = dataset.categories() |
|
|
|
|
|
labels = [] |
|
label_list = [] |
|
keys = list(categories.keys()) |
|
keys.sort() |
|
for i in keys: |
|
labels.append(i) |
|
label_list.append(categories[i]) |
|
|
|
if cfg.TEST.CHUNKED_EVALUATION != -1: |
|
labels = chunks(labels, cfg.TEST.CHUNKED_EVALUATION) |
|
label_list = chunks(label_list, cfg.TEST.CHUNKED_EVALUATION) |
|
else: |
|
labels = [labels] |
|
label_list = [label_list] |
|
|
|
all_queries = [] |
|
all_positive_map_label_to_token = [] |
|
|
|
for i in range(len(labels)): |
|
labels_i = labels[i] |
|
label_list_i = label_list[i] |
|
query_i, positive_map_label_to_token_i = create_queries_and_maps( |
|
labels_i, label_list_i, additional_labels = cfg.DATASETS.SUPRESS_QUERY if cfg.DATASETS.USE_SUPRESS_QUERY else None, cfg = cfg) |
|
|
|
all_queries.append(query_i) |
|
all_positive_map_label_to_token.append(positive_map_label_to_token_i) |
|
print("All queries", all_queries) |
|
return all_queries, all_positive_map_label_to_token |
|
|
|
def create_queries_and_maps(labels, label_list, additional_labels = None, cfg = None): |
|
|
|
|
|
original_label_list = label_list.copy() |
|
label_list = [clean_name(i) for i in label_list] |
|
|
|
tokens_positive = [] |
|
start_i = 0 |
|
end_i = 0 |
|
objects_query = "" |
|
|
|
|
|
separation_tokens = cfg.DATASETS.SEPARATION_TOKENS |
|
|
|
caption_prompt = cfg.DATASETS.CAPTION_PROMPT |
|
if caption_prompt is not None and isinstance(caption_prompt, str): |
|
caption_prompt = load_from_yaml_file(caption_prompt) |
|
use_caption_prompt = cfg.DATASETS.USE_CAPTION_PROMPT and caption_prompt is not None |
|
for _index, label in enumerate(label_list): |
|
if use_caption_prompt: |
|
objects_query += caption_prompt[_index]["prefix"] |
|
|
|
start_i = len(objects_query) |
|
|
|
if use_caption_prompt: |
|
objects_query += caption_prompt[_index]["name"] |
|
else: |
|
objects_query += label |
|
|
|
end_i = len(objects_query) |
|
tokens_positive.append([(start_i, end_i)]) |
|
|
|
if use_caption_prompt: |
|
objects_query += caption_prompt[_index]["suffix"] |
|
|
|
if _index != len(label_list) - 1: |
|
objects_query += separation_tokens |
|
|
|
if additional_labels is not None: |
|
objects_query += separation_tokens |
|
for _index, label in enumerate(additional_labels): |
|
objects_query += label |
|
if _index != len(additional_labels) - 1: |
|
objects_query += separation_tokens |
|
|
|
print(objects_query) |
|
|
|
from transformers import AutoTokenizer |
|
|
|
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased": |
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") |
|
tokenized = tokenizer(objects_query, return_tensors="pt") |
|
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip": |
|
from transformers import CLIPTokenizerFast |
|
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS: |
|
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", |
|
from_slow=True, mask_token='ðŁĴij</w>') |
|
else: |
|
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", |
|
from_slow=True) |
|
tokenized = tokenizer(objects_query, |
|
max_length=cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN, |
|
truncation=True, |
|
return_tensors="pt") |
|
else: |
|
tokenizer = None |
|
raise NotImplementedError |
|
|
|
|
|
positive_map_token_to_label, positive_map_label_to_token = create_positive_dict(tokenized, tokens_positive, |
|
labels=labels) |
|
return objects_query, positive_map_label_to_token |
|
|
|
def create_positive_map_label_to_token_from_positive_map(positive_map, plus = 0): |
|
positive_map_label_to_token = {} |
|
for i in range(len(positive_map)): |
|
positive_map_label_to_token[i + plus] = torch.nonzero(positive_map[i], as_tuple=True)[0].tolist() |
|
return positive_map_label_to_token |
|
|
|
|
|
|
|
def _accumulate_predictions_from_multiple_gpus(predictions_per_gpu): |
|
all_predictions = all_gather(predictions_per_gpu) |
|
if not is_main_process(): |
|
return |
|
|
|
predictions = {} |
|
for p in all_predictions: |
|
predictions.update(p) |
|
|
|
image_ids = list(sorted(predictions.keys())) |
|
if len(image_ids) != image_ids[-1] + 1: |
|
logger = logging.getLogger("maskrcnn_benchmark.inference") |
|
logger.warning( |
|
"Number of images that were gathered from multiple processes is not " |
|
"a contiguous set. Some images might be missing from the evaluation" |
|
) |
|
|
|
|
|
predictions = [predictions[i] for i in image_ids] |
|
return predictions |
|
|
|
def resize_box(output, targets): |
|
if isinstance(targets[0], dict): |
|
orig_target_sizes = targets[0]["orig_size"].unsqueeze(0) |
|
else: |
|
orig_target_sizes = torch.stack([targets[0].extra_fields["orig_size"] for _ in range(1)], dim=0) |
|
img_h, img_w = orig_target_sizes.unbind(1) |
|
return output.resize((img_w, img_h)) |
|
|
|
def flickr_post_process(output, targets, positive_map_label_to_token, plus): |
|
output = resize_box(output, targets) |
|
scores, indices = torch.topk(output.extra_fields["scores"], k = len(output.extra_fields["scores"]), sorted=True) |
|
boxes = output.bbox.tolist() |
|
boxes = [boxes[i] for i in indices] |
|
labels = [output.extra_fields["labels"][i] for i in indices] |
|
output_boxes = [[] for i in range(len(positive_map_label_to_token))] |
|
output_scores = [[] for i in range(len(positive_map_label_to_token))] |
|
for i in range(len(boxes)): |
|
output_boxes[labels[i] - plus].append(boxes[i]) |
|
output_scores[labels[i] - plus].append(scores[i]) |
|
for i in output_boxes: |
|
i.append([0.0, 0.0, 0.0, 0.0]) |
|
image_ids = [t.extra_fields["original_img_id"] for t in targets] |
|
sentence_ids = [t.extra_fields["sentence_id"] for t in targets] |
|
|
|
return {"image_id": image_ids[0], "sentence_id": sentence_ids[0], "boxes": output_boxes, "scores": output_scores} |
|
|
|
def build_flickr_evaluator(cfg): |
|
evaluator = FlickrEvaluator( |
|
"DATASET/flickr30k/flickr30k/", |
|
subset="test" if "test" in cfg.DATASETS.TEST[0] else "val", |
|
merge_boxes=cfg.DATASETS.FLICKR_GT_TYPE == "merged") |
|
return evaluator |
|
|
|
def build_lvis_evaluator(ann_file, fixed_ap=True): |
|
from maskrcnn_benchmark.data.datasets.evaluation.lvis.lvis import LVIS |
|
from maskrcnn_benchmark.data.datasets.evaluation.lvis.lvis_eval import LvisEvaluatorFixedAP, LvisEvaluator |
|
evaluator = LvisEvaluatorFixedAP(LVIS(ann_file), fixed_ap=fixed_ap) |
|
|
|
return evaluator |
|
|
|
def write_lvis_results(results, output_file_name): |
|
lines = [] |
|
lines.append("metric, avg ") |
|
for each_result in results: |
|
metric_string = " ".join(each_result.split(" ")[:-2]) |
|
number = each_result.split(" ")[-1] |
|
each_result = metric_string + ", " + number + " " |
|
lines.append(each_result) |
|
|
|
string_to_write = "\n".join(lines) + "\n" |
|
with open(output_file_name, "w") as f: |
|
f.write(string_to_write) |
|
return |
|
|
|
def write_flickr_results(results, output_file_name): |
|
''' |
|
{'Recall@1_all': 0.8394651146677753, 'Recall@1_animals': 0.9177820267686424, 'Recall@1_bodyparts': 0.7097966728280961, ...} |
|
''' |
|
lines = [] |
|
lines.append("metric, avg ") |
|
for each_metric, number in results.items(): |
|
each_result = each_metric + ", " + str(number) + " " |
|
lines.append(each_result) |
|
|
|
string_to_write = "\n".join(lines) + "\n" |
|
with open(output_file_name, "w") as f: |
|
f.write(string_to_write) |
|
return |
|
|
|
def inference( |
|
model, |
|
data_loader, |
|
dataset_name, |
|
iou_types=("bbox",), |
|
box_only=False, |
|
device="cuda", |
|
expected_results=(), |
|
expected_results_sigma_tol=4, |
|
output_folder=None, |
|
cfg=None, |
|
verbose=True, |
|
visualizer = None |
|
): |
|
|
|
try: |
|
device = torch.device(device) |
|
except: |
|
device = device |
|
num_devices = ( |
|
torch.distributed.get_world_size() |
|
if torch.distributed.is_initialized() |
|
else 1 |
|
) |
|
logger = logging.getLogger("maskrcnn_benchmark.inference") |
|
dataset = data_loader.dataset |
|
if verbose: |
|
logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset))) |
|
start_time = time.time() |
|
|
|
task = cfg.TEST.EVAL_TASK |
|
|
|
if not task: |
|
return inference_default(model, data_loader, dataset_name, iou_types, box_only, device, expected_results, expected_results_sigma_tol, output_folder, cfg) |
|
|
|
if cfg.GLIPKNOW.PARALLEL_LANGUAGE_INPUT: |
|
assert task == 'detection' |
|
categories = dataset.categories() |
|
|
|
keys = list(categories.keys()) |
|
keys.sort() |
|
all_queries = [[categories[k] for k in keys]] |
|
all_positive_map_label_to_token = [{k: [i] for i, k in enumerate(keys)}] |
|
elif task == "detection": |
|
all_queries, all_positive_map_label_to_token = create_queries_and_maps_from_dataset(dataset, cfg) |
|
elif task == "grounding": |
|
all_queries = [None] |
|
all_positive_map_label_to_token = [None] |
|
else: |
|
assert(0) |
|
|
|
''' |
|
Build Dataset Sepecific Evaluator |
|
''' |
|
if "flickr" in cfg.DATASETS.TEST[0]: |
|
evaluator = build_flickr_evaluator(cfg) |
|
elif "lvis" in cfg.DATASETS.TEST[0]: |
|
evaluator = build_lvis_evaluator(dataset.ann_file, fixed_ap=not cfg.DATASETS.LVIS_USE_NORMAL_AP) |
|
else: |
|
evaluator = None |
|
|
|
model.eval() |
|
results_dict = {} |
|
cpu_device = torch.device("cpu") |
|
if verbose: |
|
_iterator = tqdm(data_loader) |
|
else: |
|
_iterator = data_loader |
|
for i, batch in enumerate(_iterator): |
|
if i == cfg.TEST.SUBSET: |
|
break |
|
images, targets, image_ids, *_ = batch |
|
|
|
all_output = [] |
|
mdetr_style_output = [] |
|
with torch.no_grad(): |
|
if cfg.TEST.USE_MULTISCALE: |
|
query_time = len(all_queries) |
|
for query_i in range(query_time): |
|
if task == "detection": |
|
captions = [all_queries[query_i] for ii in range(len(targets))] |
|
positive_map_label_to_token = all_positive_map_label_to_token[query_i] |
|
else: |
|
captions = None |
|
positive_map_label_to_token = None |
|
|
|
output = im_detect_bbox_aug(model, images, device, captions, positive_map_label_to_token) |
|
output = [o.to(cpu_device) for o in output] |
|
all_output.append(output) |
|
else: |
|
images = images.to(device) |
|
query_time = len(all_queries) |
|
|
|
for query_i in range(query_time): |
|
if not isinstance(targets[0], dict): |
|
targets = [target.to(device) for target in targets] |
|
''' |
|
different datasets seem to have different data format... For LVIS dataset, the target is a dictionary, while for modulatedDataset such as COCO/Flickr, the target is a BoxList |
|
''' |
|
|
|
if task == "detection": |
|
captions = [all_queries[query_i] for ii in range(len(targets))] |
|
positive_map_label_to_token = all_positive_map_label_to_token[query_i] |
|
elif task == "grounding": |
|
captions = [t.get_field("caption") for t in targets] |
|
positive_map_eval = [t.get_field("positive_map_eval") for t in targets] |
|
if cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD": |
|
plus = 1 |
|
else: |
|
plus = 0 |
|
assert(len(positive_map_eval) == 1) |
|
positive_map_eval = positive_map_eval[0] |
|
positive_map_label_to_token = create_positive_map_label_to_token_from_positive_map(positive_map_eval, plus=plus) |
|
output = model(images, captions=captions, positive_map=positive_map_label_to_token) |
|
output = [o.to(cpu_device) for o in output] |
|
|
|
if "flickr" in cfg.DATASETS.TEST[0]: |
|
output = output[0] |
|
new_output = flickr_post_process( |
|
output, |
|
targets, |
|
positive_map_label_to_token, |
|
plus |
|
) |
|
mdetr_style_output.append(new_output) |
|
elif "lvis" in cfg.DATASETS.TEST[0]: |
|
output = output[0] |
|
output = resize_box(output, targets) |
|
scores = output.extra_fields["scores"] |
|
labels = output.extra_fields["labels"] |
|
boxes = output.bbox |
|
mdetr_style_output.append((targets[0]["image_id"].item(), {"scores": scores, "labels": labels, "boxes": boxes})) |
|
else: |
|
all_output.append(output) |
|
if visualizer is not None: |
|
assert(len(all_output) == 1) |
|
if "lvis" in cfg.DATASETS.TEST[0]: |
|
scores = [o[1]["scores"] for o in mdetr_style_output] |
|
labels = [o[1]["labels"] for o in mdetr_style_output] |
|
boxes = [o[1]["boxes"] for o in mdetr_style_output] |
|
scores = torch.cat(scores, dim=0) |
|
labels = torch.cat(labels, dim=0) |
|
boxes = torch.cat(boxes, dim=0) |
|
visualizer_input = BoxList(boxes, output.size) |
|
visualizer_input.add_field("scores", scores) |
|
visualizer_input.add_field("labels", labels) |
|
else: |
|
visualizer_input = all_output[0][0] |
|
|
|
image_id = dataset.ids[i] |
|
try: |
|
image_path = os.path.join(dataset.root, dataset.coco.loadImgs(image_id)[0]["file_name"]) |
|
categories = dataset.coco.dataset["categories"] |
|
except: |
|
lvis = dataset.lvis |
|
img_id = dataset.ids[i] |
|
ann_ids = lvis.get_ann_ids(img_ids=img_id) |
|
target = lvis.load_anns(ann_ids) |
|
|
|
image_path = "DATASET/coco/" + "/".join(dataset.lvis.load_imgs(img_id)[0]["coco_url"].split("/")[-2:]) |
|
categories = dataset.lvis.dataset["categories"] |
|
|
|
image = load(image_path) |
|
no_background = True |
|
label_list = [] |
|
for index, i in enumerate(categories): |
|
if not no_background or (i["name"] != "__background__" and i['id'] != 0): |
|
label_list.append(i["name"]) |
|
visualizer.entities = label_list |
|
|
|
result, _ = visualizer.visualize_with_predictions( |
|
image, |
|
visualizer_input, |
|
threshold, |
|
alpha=alpha, |
|
box_pixel=box_pixel, |
|
text_size=text_size, |
|
text_pixel=text_pixel, |
|
text_offset=text_offset, |
|
text_offset_original=text_offset_original, |
|
color=color, |
|
) |
|
imshow(result, "./visualize/img_{}.jpg".format(i)) |
|
|
|
if evaluator is not None: |
|
evaluator.update(mdetr_style_output) |
|
else: |
|
output = [[row[_i] for row in all_output] for _i in range(len(all_output[0]))] |
|
for index, i in enumerate(output): |
|
output[index] = i[0].concate_box_list(i) |
|
|
|
results_dict.update({img_id: result for img_id, result in zip(image_ids, output)}) |
|
|
|
if evaluator is not None: |
|
evaluator.synchronize_between_processes() |
|
try: |
|
evaluator.accumulate() |
|
except: |
|
print("Evaluator has no accumulation, skipped...") |
|
score = evaluator.summarize() |
|
print(score) |
|
import maskrcnn_benchmark.utils.mdetr_dist as dist |
|
if is_main_process(): |
|
if "flickr" in cfg.DATASETS.TEST[0]: |
|
write_flickr_results(score, output_file_name=os.path.join(output_folder, "bbox.csv")) |
|
elif "lvis" in cfg.DATASETS.TEST[0]: |
|
write_lvis_results(score, output_file_name=os.path.join(output_folder, "bbox.csv")) |
|
try: |
|
torch.distributed.barrier() |
|
except: |
|
print("Default process group is not initialized") |
|
return |
|
|
|
if evaluator is not None: |
|
predictions = mdetr_style_output |
|
else: |
|
predictions = results_dict |
|
|
|
synchronize() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=total_time)) |
|
logger.info( |
|
"Total inference time: {} ({} s / img per device, on {} devices)".format( |
|
total_time_str, total_time * num_devices / len(dataset), num_devices |
|
) |
|
) |
|
|
|
predictions = _accumulate_predictions_from_multiple_gpus(predictions) |
|
print("Accumulated results") |
|
if not is_main_process(): |
|
return None |
|
|
|
if output_folder: |
|
torch.save(predictions, os.path.join(output_folder, "predictions.pth")) |
|
|
|
extra_args = dict( |
|
box_only=box_only, |
|
iou_types=iou_types, |
|
expected_results=expected_results, |
|
expected_results_sigma_tol=expected_results_sigma_tol, |
|
) |
|
return evaluate(dataset=dataset, predictions=predictions, output_folder=output_folder, **extra_args) |
|
|