|
|
|
import cv2 |
|
import torch |
|
import numpy as np |
|
from torchvision import transforms as T |
|
|
|
from maskrcnn_benchmark.modeling.detector import build_detection_model |
|
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer |
|
from maskrcnn_benchmark.structures.image_list import to_image_list |
|
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou |
|
from maskrcnn_benchmark.structures.bounding_box import BoxList |
|
from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker |
|
from maskrcnn_benchmark import layers as L |
|
from maskrcnn_benchmark.utils import cv2_util |
|
|
|
|
|
import timeit |
|
|
|
class COCODemo(object): |
|
|
|
CATEGORIES = [ |
|
"__background", |
|
"person", |
|
"bicycle", |
|
"car", |
|
"motorcycle", |
|
"airplane", |
|
"bus", |
|
"train", |
|
"truck", |
|
"boat", |
|
"traffic light", |
|
"fire hydrant", |
|
"stop sign", |
|
"parking meter", |
|
"bench", |
|
"bird", |
|
"cat", |
|
"dog", |
|
"horse", |
|
"sheep", |
|
"cow", |
|
"elephant", |
|
"bear", |
|
"zebra", |
|
"giraffe", |
|
"backpack", |
|
"umbrella", |
|
"handbag", |
|
"tie", |
|
"suitcase", |
|
"frisbee", |
|
"skis", |
|
"snowboard", |
|
"sports ball", |
|
"kite", |
|
"baseball bat", |
|
"baseball glove", |
|
"skateboard", |
|
"surfboard", |
|
"tennis racket", |
|
"bottle", |
|
"wine glass", |
|
"cup", |
|
"fork", |
|
"knife", |
|
"spoon", |
|
"bowl", |
|
"banana", |
|
"apple", |
|
"sandwich", |
|
"orange", |
|
"broccoli", |
|
"carrot", |
|
"hot dog", |
|
"pizza", |
|
"donut", |
|
"cake", |
|
"chair", |
|
"couch", |
|
"potted plant", |
|
"bed", |
|
"dining table", |
|
"toilet", |
|
"tv", |
|
"laptop", |
|
"mouse", |
|
"remote", |
|
"keyboard", |
|
"cell phone", |
|
"microwave", |
|
"oven", |
|
"toaster", |
|
"sink", |
|
"refrigerator", |
|
"book", |
|
"clock", |
|
"vase", |
|
"scissors", |
|
"teddy bear", |
|
"hair drier", |
|
"toothbrush", |
|
] |
|
|
|
def __init__( |
|
self, |
|
cfg, |
|
confidence_threshold=0.7, |
|
show_mask_heatmaps=False, |
|
masks_per_dim=2, |
|
min_image_size=None, |
|
exclude_region=None, |
|
): |
|
self.cfg = cfg.clone() |
|
self.model = build_detection_model(cfg) |
|
self.model.eval() |
|
self.device = torch.device(cfg.MODEL.DEVICE) |
|
self.model.to(self.device) |
|
self.min_image_size = min_image_size |
|
|
|
save_dir = cfg.OUTPUT_DIR |
|
checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir) |
|
_ = checkpointer.load(cfg.MODEL.WEIGHT) |
|
|
|
self.transforms = self.build_transform() |
|
|
|
mask_threshold = -1 if show_mask_heatmaps else 0.5 |
|
self.masker = Masker(threshold=mask_threshold, padding=1) |
|
|
|
|
|
self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1]) |
|
|
|
self.cpu_device = torch.device("cpu") |
|
self.confidence_threshold = confidence_threshold |
|
self.show_mask_heatmaps = show_mask_heatmaps |
|
self.masks_per_dim = masks_per_dim |
|
self.exclude_region = exclude_region |
|
|
|
def build_transform(self): |
|
""" |
|
Creates a basic transformation that was used to train the models |
|
""" |
|
cfg = self.cfg |
|
|
|
|
|
|
|
|
|
|
|
if cfg.INPUT.TO_BGR255: |
|
to_bgr_transform = T.Lambda(lambda x: x * 255) |
|
else: |
|
to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]]) |
|
|
|
normalize_transform = T.Normalize( |
|
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD |
|
) |
|
|
|
transform = T.Compose( |
|
[ |
|
T.ToPILImage(), |
|
T.Resize(self.min_image_size) if self.min_image_size is not None else lambda x:x, |
|
T.ToTensor(), |
|
to_bgr_transform, |
|
normalize_transform, |
|
] |
|
) |
|
return transform |
|
|
|
def inference(self, image, debug=False): |
|
""" |
|
Arguments: |
|
image (np.ndarray): an image as returned by OpenCV |
|
|
|
Returns: |
|
prediction (BoxList): the detected objects. Additional information |
|
of the detection properties can be found in the fields of |
|
the BoxList via `prediction.fields()` |
|
""" |
|
predictions, debug_info = self.compute_prediction(image) |
|
top_predictions = self.select_top_predictions(predictions) |
|
|
|
if debug: |
|
return top_predictions, debug_info |
|
else: |
|
return top_predictions |
|
|
|
def run_on_opencv_image(self, image): |
|
""" |
|
Arguments: |
|
image (np.ndarray): an image as returned by OpenCV |
|
|
|
Returns: |
|
prediction (BoxList): the detected objects. Additional information |
|
of the detection properties can be found in the fields of |
|
the BoxList via `prediction.fields()` |
|
""" |
|
predictions, debug_info = self.compute_prediction(image) |
|
top_predictions = self.select_top_predictions(predictions) |
|
|
|
result = image.copy() |
|
if self.show_mask_heatmaps: |
|
return self.create_mask_montage(result, top_predictions) |
|
result = self.overlay_boxes(result, top_predictions) |
|
if self.cfg.MODEL.MASK_ON: |
|
result = self.overlay_mask(result, top_predictions) |
|
if self.cfg.MODEL.KEYPOINT_ON: |
|
result = self.overlay_keypoints(result, top_predictions) |
|
result = self.overlay_class_names(result, top_predictions) |
|
|
|
return result, debug_info, top_predictions |
|
|
|
def compute_prediction(self, original_image): |
|
""" |
|
Arguments: |
|
original_image (np.ndarray): an image as returned by OpenCV |
|
|
|
Returns: |
|
prediction (BoxList): the detected objects. Additional information |
|
of the detection properties can be found in the fields of |
|
the BoxList via `prediction.fields()` |
|
""" |
|
|
|
|
|
|
|
|
|
image = self.transforms(original_image) |
|
|
|
|
|
|
|
|
|
image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY) |
|
image_list = image_list.to(self.device) |
|
tic = timeit.time.perf_counter() |
|
|
|
|
|
with torch.no_grad(): |
|
predictions, debug_info = self.model(image_list) |
|
predictions = [o.to(self.cpu_device) for o in predictions] |
|
debug_info['total_time'] = timeit.time.perf_counter() - tic |
|
|
|
|
|
prediction = predictions[0] |
|
|
|
|
|
height, width = original_image.shape[:-1] |
|
prediction = prediction.resize((width, height)) |
|
|
|
if prediction.has_field("mask"): |
|
|
|
|
|
masks = prediction.get_field("mask") |
|
|
|
masks = self.masker([masks], [prediction])[0] |
|
prediction.add_field("mask", masks) |
|
|
|
return prediction, debug_info |
|
|
|
def select_top_predictions(self, predictions): |
|
""" |
|
Select only predictions which have a `score` > self.confidence_threshold, |
|
and returns the predictions in descending order of score |
|
|
|
Arguments: |
|
predictions (BoxList): the result of the computation by the model. |
|
It should contain the field `scores`. |
|
|
|
Returns: |
|
prediction (BoxList): the detected objects. Additional information |
|
of the detection properties can be found in the fields of |
|
the BoxList via `prediction.fields()` |
|
""" |
|
|
|
scores = predictions.get_field("scores") |
|
labels = predictions.get_field("labels").tolist() |
|
thresh = scores.clone() |
|
for i,lb in enumerate(labels): |
|
if isinstance(self.confidence_threshold, float): |
|
thresh[i] = self.confidence_threshold |
|
elif len(self.confidence_threshold)==1: |
|
thresh[i] = self.confidence_threshold[0] |
|
else: |
|
thresh[i] = self.confidence_threshold[lb-1] |
|
keep = torch.nonzero(scores > thresh).squeeze(1) |
|
predictions = predictions[keep] |
|
|
|
if self.exclude_region: |
|
exlude = BoxList(self.exclude_region, predictions.size) |
|
iou = boxlist_iou(exlude, predictions) |
|
keep = torch.nonzero(torch.sum(iou>0.5, dim=0)==0).squeeze(1) |
|
if len(keep)>0: |
|
predictions = predictions[keep] |
|
|
|
scores = predictions.get_field("scores") |
|
_, idx = scores.sort(0, descending=True) |
|
return predictions[idx] |
|
|
|
def compute_colors_for_labels(self, labels): |
|
""" |
|
Simple function that adds fixed colors depending on the class |
|
""" |
|
colors = (30*(labels[:, None] -1)+1)*self.palette |
|
colors = (colors % 255).numpy().astype("uint8") |
|
return colors |
|
|
|
def overlay_boxes(self, image, predictions): |
|
""" |
|
Adds the predicted boxes on top of the image |
|
|
|
Arguments: |
|
image (np.ndarray): an image as returned by OpenCV |
|
predictions (BoxList): the result of the computation by the model. |
|
It should contain the field `labels`. |
|
""" |
|
labels = predictions.get_field("labels") |
|
boxes = predictions.bbox |
|
|
|
colors = self.compute_colors_for_labels(labels).tolist() |
|
|
|
for box, color in zip(boxes, colors): |
|
box = box.to(torch.int64) |
|
top_left, bottom_right = box[:2].tolist(), box[2:].tolist() |
|
image = cv2.rectangle( |
|
image, tuple(top_left), tuple(bottom_right), tuple(color), 2) |
|
|
|
return image |
|
|
|
def overlay_scores(self, image, predictions): |
|
""" |
|
Adds the predicted boxes on top of the image |
|
|
|
Arguments: |
|
image (np.ndarray): an image as returned by OpenCV |
|
predictions (BoxList): the result of the computation by the model. |
|
It should contain the field `labels`. |
|
""" |
|
scores = predictions.get_field("scores") |
|
boxes = predictions.bbox |
|
|
|
for box, score in zip(boxes, scores): |
|
box = box.to(torch.int64) |
|
image = cv2.putText(image, '%.3f'%score, |
|
(box[0], (box[1]+box[3])/2), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, |
|
(255,255,255), 1) |
|
|
|
return image |
|
|
|
def overlay_cboxes(self, image, predictions): |
|
""" |
|
Adds the predicted boxes on top of the image |
|
|
|
Arguments: |
|
image (np.ndarray): an image as returned by OpenCV |
|
predictions (BoxList): the result of the computation by the model. |
|
It should contain the field `labels`. |
|
""" |
|
scores = predictions.get_field("scores") |
|
boxes = predictions.bbox |
|
for box, score in zip(boxes, scores): |
|
box = box.to(torch.int64) |
|
top_left, bottom_right = box[:2].tolist(), box[2:].tolist() |
|
image = cv2.rectangle( |
|
image, tuple(top_left), tuple(bottom_right), (255,0,0), 2) |
|
image = cv2.putText(image, '%.3f'%score, |
|
(box[0], (box[1]+box[3])/2), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, |
|
(255,0,0), 1) |
|
return image |
|
|
|
def overlay_centers(self, image, predictions): |
|
""" |
|
Adds the predicted boxes on top of the image |
|
|
|
Arguments: |
|
image (np.ndarray): an image as returned by OpenCV |
|
predictions (BoxList): the result of the computation by the model. |
|
It should contain the field `labels`. |
|
""" |
|
centers = predictions.get_field("centers") |
|
|
|
for cord in centers: |
|
cord = cord.to(torch.int64) |
|
image = cv2.circle(image, (cord[0].item(),cord[1].item()), |
|
2, (255,0,0), 20) |
|
|
|
return image |
|
|
|
def overlay_count(self, image, predictions): |
|
""" |
|
Adds the predicted boxes on top of the image |
|
|
|
Arguments: |
|
image (np.ndarray): an image as returned by OpenCV |
|
predictions (BoxList): the result of the computation by the model. |
|
It should contain the field `labels`. |
|
""" |
|
if isinstance(predictions, int): |
|
count = predictions |
|
else: |
|
count = len(predictions) |
|
image = cv2.putText(image, 'Count: %d'%count, (0,100), cv2.FONT_HERSHEY_SIMPLEX, 3, (255,0,0), 3) |
|
|
|
return image |
|
|
|
def overlay_mask(self, image, predictions): |
|
""" |
|
Adds the instances contours for each predicted object. |
|
Each label has a different color. |
|
|
|
Arguments: |
|
image (np.ndarray): an image as returned by OpenCV |
|
predictions (BoxList): the result of the computation by the model. |
|
It should contain the field `mask` and `labels`. |
|
""" |
|
masks = predictions.get_field("mask").numpy() |
|
labels = predictions.get_field("labels") |
|
|
|
colors = self.compute_colors_for_labels(labels).tolist() |
|
|
|
for mask, color in zip(masks, colors): |
|
thresh = mask[0, :, :, None].astype(np.uint8) |
|
contours, hierarchy = cv2_util.findContours( |
|
thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE |
|
) |
|
image = cv2.drawContours(image, contours, -1, color, 3) |
|
|
|
composite = image |
|
|
|
return composite |
|
|
|
def overlay_keypoints(self, image, predictions): |
|
keypoints = predictions.get_field("keypoints") |
|
kps = keypoints.keypoints |
|
scores = keypoints.get_field("logits") |
|
kps = torch.cat((kps[:, :, 0:2], scores[:, :, None]), dim=2).numpy() |
|
for region in kps: |
|
image = vis_keypoints(image, region.transpose((1, 0)), |
|
names=keypoints.NAMES, connections=keypoints.CONNECTIONS) |
|
return image |
|
|
|
def create_mask_montage(self, image, predictions): |
|
""" |
|
Create a montage showing the probability heatmaps for each one one of the |
|
detected objects |
|
|
|
Arguments: |
|
image (np.ndarray): an image as returned by OpenCV |
|
predictions (BoxList): the result of the computation by the model. |
|
It should contain the field `mask`. |
|
""" |
|
masks = predictions.get_field("mask") |
|
masks_per_dim = self.masks_per_dim |
|
masks = L.interpolate( |
|
masks.float(), scale_factor=1 / masks_per_dim |
|
).byte() |
|
height, width = masks.shape[-2:] |
|
max_masks = masks_per_dim ** 2 |
|
masks = masks[:max_masks] |
|
|
|
if len(masks) < max_masks: |
|
masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8) |
|
masks_padded[: len(masks)] = masks |
|
masks = masks_padded |
|
masks = masks.reshape(masks_per_dim, masks_per_dim, height, width) |
|
result = torch.zeros( |
|
(masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8 |
|
) |
|
for y in range(masks_per_dim): |
|
start_y = y * height |
|
end_y = (y + 1) * height |
|
for x in range(masks_per_dim): |
|
start_x = x * width |
|
end_x = (x + 1) * width |
|
result[start_y:end_y, start_x:end_x] = masks[y, x] |
|
return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET) |
|
|
|
def overlay_class_names(self, image, predictions, names=None): |
|
""" |
|
Adds detected class names and scores in the positions defined by the |
|
top-left corner of the predicted bounding box |
|
|
|
Arguments: |
|
image (np.ndarray): an image as returned by OpenCV |
|
predictions (BoxList): the result of the computation by the model. |
|
It should contain the field `scores` and `labels`. |
|
""" |
|
scores = predictions.get_field("scores").tolist() |
|
labels = predictions.get_field("labels").tolist() |
|
if names: |
|
labels = [names[i-1] for i in labels] |
|
else: |
|
labels = [self.CATEGORIES[i] for i in labels] |
|
boxes = predictions.bbox |
|
|
|
template = "{}: {:.2f}" |
|
for box, score, label in zip(boxes, scores, labels): |
|
x, y = box[:2] |
|
s = template.format(label, score) |
|
cv2.putText( |
|
image, s, (x, y), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 255, 255), 1 |
|
) |
|
|
|
return image |
|
|
|
def vis_keypoints(img, kps, kp_thresh=0, alpha=0.7, names=None, connections=None): |
|
"""Visualizes keypoints (adapted from vis_one_image). |
|
kps has shape (4, #keypoints) where 4 rows are (x, y, logit, prob). |
|
""" |
|
|
|
dataset_keypoints = names |
|
kp_lines = connections |
|
|
|
|
|
blue_red_ratio = 0.8 |
|
gx = lambda x: (6-2*blue_red_ratio)*x + blue_red_ratio |
|
colors = [[256*max(0, (3-abs(gx(i)-4)-abs(gx(i)-5))/2), |
|
256*max(0, (3-abs(gx(i)-2)-abs(gx(i)-4))/2), |
|
256*max(0, (3-abs(gx(i)-1)-abs(gx(i)-2))/2),] for i in np.linspace(0, 1, len(kp_lines) + 2)] |
|
|
|
|
|
kp_mask = np.copy(img) |
|
|
|
|
|
mid_shoulder = ( |
|
kps[:2, dataset_keypoints.index('right_shoulder')] + |
|
kps[:2, dataset_keypoints.index('left_shoulder')]) / 2.0 |
|
sc_mid_shoulder = np.minimum( |
|
kps[2, dataset_keypoints.index('right_shoulder')], |
|
kps[2, dataset_keypoints.index('left_shoulder')]) |
|
nose_idx = dataset_keypoints.index('nose') |
|
if sc_mid_shoulder > kp_thresh and kps[2, nose_idx] > kp_thresh: |
|
cv2.line( |
|
kp_mask, tuple(mid_shoulder), tuple(kps[:2, nose_idx]), |
|
color=colors[len(kp_lines)], thickness=2, lineType=cv2.LINE_AA) |
|
|
|
if 'right_hip' in names and 'left_hip' in names: |
|
mid_hip = ( |
|
kps[:2, dataset_keypoints.index('right_hip')] + |
|
kps[:2, dataset_keypoints.index('left_hip')]) / 2.0 |
|
sc_mid_hip = np.minimum( |
|
kps[2, dataset_keypoints.index('right_hip')], |
|
kps[2, dataset_keypoints.index('left_hip')]) |
|
if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh: |
|
cv2.line( |
|
kp_mask, tuple(mid_shoulder), tuple(mid_hip), |
|
color=colors[len(kp_lines) + 1], thickness=2, lineType=cv2.LINE_AA) |
|
|
|
|
|
for l in range(len(kp_lines)): |
|
i1 = kp_lines[l][0] |
|
i2 = kp_lines[l][1] |
|
p1 = kps[0, i1], kps[1, i1] |
|
p2 = kps[0, i2], kps[1, i2] |
|
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh: |
|
cv2.line( |
|
kp_mask, p1, p2, |
|
color=colors[l], thickness=2, lineType=cv2.LINE_AA) |
|
if kps[2, i1] > kp_thresh: |
|
cv2.circle( |
|
kp_mask, p1, |
|
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) |
|
if kps[2, i2] > kp_thresh: |
|
cv2.circle( |
|
kp_mask, p2, |
|
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) |
|
|
|
|
|
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0) |