|
import cv2 |
|
import torch |
|
import re |
|
import numpy as np |
|
from typing import List, Union |
|
import nltk |
|
import inflect |
|
from transformers import AutoTokenizer |
|
from torchvision import transforms as T |
|
import pdb |
|
from maskrcnn_benchmark.modeling.detector import build_detection_model |
|
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer |
|
from maskrcnn_benchmark.structures.image_list import to_image_list |
|
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou |
|
from maskrcnn_benchmark.structures.bounding_box import BoxList |
|
from maskrcnn_benchmark import layers as L |
|
from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker |
|
from maskrcnn_benchmark.utils import cv2_util |
|
|
|
engine = inflect.engine() |
|
nltk.download('punkt') |
|
nltk.download('averaged_perceptron_tagger') |
|
|
|
import timeit |
|
|
|
|
|
class GLIPDemo(object): |
|
def __init__(self, |
|
cfg, |
|
confidence_threshold=0.7, |
|
min_image_size=None, |
|
show_mask_heatmaps=False, |
|
masks_per_dim=5, |
|
load_model=True |
|
): |
|
self.cfg = cfg.clone() |
|
if load_model: |
|
self.model = build_detection_model(cfg) |
|
self.model.eval() |
|
self.device = torch.device(cfg.MODEL.DEVICE) |
|
self.model.to(self.device) |
|
self.min_image_size = min_image_size |
|
self.show_mask_heatmaps = show_mask_heatmaps |
|
self.masks_per_dim = masks_per_dim |
|
|
|
save_dir = cfg.OUTPUT_DIR |
|
if load_model: |
|
checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir) |
|
_ = checkpointer.load(cfg.MODEL.WEIGHT) |
|
|
|
self.transforms = self.build_transform() |
|
|
|
|
|
mask_threshold = -1 if show_mask_heatmaps else 0.5 |
|
self.masker = Masker(threshold=mask_threshold, padding=1) |
|
self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1]) |
|
self.cpu_device = torch.device("cpu") |
|
self.confidence_threshold = confidence_threshold |
|
|
|
self.tokenizer = self.build_tokenizer() |
|
|
|
def build_transform(self): |
|
""" |
|
Creates a basic transformation that was used to train the models |
|
""" |
|
cfg = self.cfg |
|
|
|
|
|
|
|
|
|
|
|
if cfg.INPUT.TO_BGR255: |
|
to_bgr_transform = T.Lambda(lambda x: x * 255) |
|
else: |
|
to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]]) |
|
|
|
normalize_transform = T.Normalize( |
|
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD |
|
) |
|
|
|
transform = T.Compose( |
|
[ |
|
T.ToPILImage(), |
|
T.Resize(self.min_image_size) if self.min_image_size is not None else lambda x: x, |
|
T.ToTensor(), |
|
to_bgr_transform, |
|
normalize_transform, |
|
] |
|
) |
|
return transform |
|
|
|
def build_tokenizer(self): |
|
cfg = self.cfg |
|
tokenizer = None |
|
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased": |
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") |
|
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip": |
|
from transformers import CLIPTokenizerFast |
|
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS: |
|
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", |
|
from_slow=True, mask_token='ðŁĴij</w>') |
|
else: |
|
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", |
|
from_slow=True) |
|
return tokenizer |
|
|
|
def run_ner(self, caption): |
|
noun_phrases = find_noun_phrases(caption) |
|
noun_phrases = [remove_punctuation(phrase) for phrase in noun_phrases] |
|
noun_phrases = [phrase for phrase in noun_phrases if phrase != ''] |
|
relevant_phrases = noun_phrases |
|
labels = noun_phrases |
|
self.entities = labels |
|
|
|
tokens_positive = [] |
|
|
|
for entity, label in zip(relevant_phrases, labels): |
|
try: |
|
|
|
for m in re.finditer(entity, caption.lower()): |
|
tokens_positive.append([[m.start(), m.end()]]) |
|
except: |
|
print("noun entities:", noun_phrases) |
|
print("entity:", entity) |
|
print("caption:", caption.lower()) |
|
|
|
return tokens_positive |
|
|
|
def inference(self, original_image, original_caption): |
|
predictions = self.compute_prediction(original_image, original_caption) |
|
top_predictions = self._post_process_fixed_thresh(predictions) |
|
return top_predictions |
|
|
|
def run_on_web_image(self, |
|
original_image, |
|
original_caption, |
|
thresh=0.5, |
|
custom_entity=None, |
|
alpha=0.0): |
|
predictions = self.compute_prediction(original_image, original_caption, custom_entity) |
|
top_predictions = self._post_process(predictions, thresh) |
|
|
|
result = original_image.copy() |
|
if self.show_mask_heatmaps: |
|
return self.create_mask_montage(result, top_predictions) |
|
result, coordinates = self.overlay_boxes(result, top_predictions) |
|
result, object_names = self.overlay_entity_names(result, top_predictions) |
|
|
|
data = [] |
|
|
|
for coordinate, object in zip(coordinates, object_names): |
|
data.append([object, coordinate]) |
|
|
|
if self.cfg.MODEL.MASK_ON: |
|
result = self.overlay_mask(result, top_predictions) |
|
return result, top_predictions, data |
|
|
|
def visualize_with_predictions(self, |
|
original_image, |
|
predictions, |
|
thresh=0.5, |
|
alpha=0.0, |
|
box_pixel=3, |
|
text_size=1, |
|
text_pixel=2, |
|
text_offset=10, |
|
text_offset_original=4, |
|
color=255): |
|
self.color = color |
|
height, width = original_image.shape[:-1] |
|
predictions = predictions.resize((width, height)) |
|
top_predictions = self._post_process(predictions, thresh) |
|
|
|
result = original_image.copy() |
|
if self.show_mask_heatmaps: |
|
return self.create_mask_montage(result, top_predictions) |
|
result = self.overlay_boxes(result, top_predictions, alpha=alpha, box_pixel=box_pixel) |
|
result = self.overlay_entity_names(result, top_predictions, text_size=text_size, text_pixel=text_pixel, |
|
text_offset=text_offset, text_offset_original=text_offset_original) |
|
if self.cfg.MODEL.MASK_ON: |
|
result = self.overlay_mask(result, top_predictions) |
|
return result, top_predictions |
|
|
|
def compute_prediction(self, original_image, original_caption, custom_entity=None): |
|
|
|
image = self.transforms(original_image) |
|
image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY) |
|
image_list = image_list.to("cuda") |
|
|
|
if isinstance(original_caption, list): |
|
|
|
caption_string = "" |
|
tokens_positive = [] |
|
seperation_tokens = " . " |
|
for word in original_caption: |
|
tokens_positive.append([len(caption_string), len(caption_string) + len(word)]) |
|
caption_string += word |
|
caption_string += seperation_tokens |
|
|
|
tokenized = self.tokenizer([caption_string], return_tensors="pt") |
|
tokens_positive = [tokens_positive] |
|
|
|
original_caption = caption_string |
|
print(tokens_positive) |
|
else: |
|
tokenized = self.tokenizer([original_caption], return_tensors="pt") |
|
if custom_entity is None: |
|
tokens_positive = self.run_ner(original_caption) |
|
print(tokens_positive) |
|
|
|
positive_map = create_positive_map(tokenized, tokens_positive) |
|
|
|
if self.cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD": |
|
plus = 1 |
|
else: |
|
plus = 0 |
|
|
|
positive_map_label_to_token = create_positive_map_label_to_token_from_positive_map(positive_map, plus=plus) |
|
self.plus = plus |
|
self.positive_map_label_to_token = positive_map_label_to_token |
|
tic = timeit.time.perf_counter() |
|
|
|
|
|
with torch.no_grad(): |
|
predictions = self.model(image_list, captions=[original_caption], positive_map=positive_map_label_to_token) |
|
predictions = [o.to(self.cpu_device) for o in predictions] |
|
print("inference time per image: {}".format(timeit.time.perf_counter() - tic)) |
|
|
|
|
|
prediction = predictions[0] |
|
|
|
|
|
height, width = original_image.shape[:-1] |
|
prediction = prediction.resize((width, height)) |
|
|
|
if prediction.has_field("mask"): |
|
|
|
|
|
masks = prediction.get_field("mask") |
|
|
|
masks = self.masker([masks], [prediction])[0] |
|
prediction.add_field("mask", masks) |
|
|
|
return prediction |
|
|
|
def _post_process_fixed_thresh(self, predictions): |
|
scores = predictions.get_field("scores") |
|
labels = predictions.get_field("labels").tolist() |
|
thresh = scores.clone() |
|
for i, lb in enumerate(labels): |
|
if isinstance(self.confidence_threshold, float): |
|
thresh[i] = self.confidence_threshold |
|
elif len(self.confidence_threshold) == 1: |
|
thresh[i] = self.confidence_threshold[0] |
|
else: |
|
thresh[i] = self.confidence_threshold[lb - 1] |
|
keep = torch.nonzero(scores > thresh).squeeze(1) |
|
predictions = predictions[keep] |
|
|
|
scores = predictions.get_field("scores") |
|
_, idx = scores.sort(0, descending=True) |
|
return predictions[idx] |
|
|
|
def _post_process(self, predictions, threshold=0.5): |
|
scores = predictions.get_field("scores") |
|
labels = predictions.get_field("labels").tolist() |
|
thresh = scores.clone() |
|
for i, lb in enumerate(labels): |
|
if isinstance(self.confidence_threshold, float): |
|
thresh[i] = threshold |
|
elif len(self.confidence_threshold) == 1: |
|
thresh[i] = threshold |
|
else: |
|
thresh[i] = self.confidence_threshold[lb - 1] |
|
keep = torch.nonzero(scores > thresh).squeeze(1) |
|
predictions = predictions[keep] |
|
|
|
scores = predictions.get_field("scores") |
|
_, idx = scores.sort(0, descending=True) |
|
return predictions[idx] |
|
|
|
def compute_colors_for_labels(self, labels): |
|
""" |
|
Simple function that adds fixed colors depending on the class |
|
""" |
|
colors = (300 * (labels[:, None] - 1) + 1) * self.palette |
|
colors = (colors % 255).numpy().astype("uint8") |
|
try: |
|
colors = (colors * 0 + self.color).astype("uint8") |
|
except: |
|
pass |
|
return colors |
|
|
|
def overlay_boxes(self, image, predictions, alpha=0.5, box_pixel=3): |
|
labels = predictions.get_field("labels") |
|
boxes = predictions.bbox |
|
|
|
colors = self.compute_colors_for_labels(labels).tolist() |
|
coordinates = [] |
|
new_image = image.copy() |
|
for box, color in zip(boxes, colors): |
|
box = box.to(torch.int64) |
|
top_left, bottom_right = box[:2].tolist(), box[2:].tolist() |
|
left, top = tuple(top_left) |
|
right, bottom = tuple(bottom_right) |
|
center = (int((left+right)/2), int((top+bottom)/2)) |
|
coordinates.append(center) |
|
new_image = cv2.rectangle( |
|
new_image, tuple(top_left), tuple(bottom_right), tuple(color), box_pixel) |
|
|
|
|
|
image = cv2.addWeighted(new_image, alpha, image, 1 - alpha, 0) |
|
|
|
return image, coordinates |
|
|
|
def overlay_scores(self, image, predictions): |
|
scores = predictions.get_field("scores") |
|
boxes = predictions.bbox |
|
|
|
for box, score in zip(boxes, scores): |
|
box = box.to(torch.int64) |
|
image = cv2.putText(image, '%.3f' % score, |
|
(int(box[0]), int((box[1] + box[3]) / 2)), |
|
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 2, cv2.LINE_AA) |
|
|
|
return image |
|
|
|
def overlay_entity_names(self, image, predictions, names=None, text_size=0.7, text_pixel=2, text_offset=10, |
|
text_offset_original=4): |
|
scores = predictions.get_field("scores").tolist() |
|
labels = predictions.get_field("labels").tolist() |
|
new_labels = [] |
|
if self.cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD": |
|
plus = 1 |
|
else: |
|
plus = 0 |
|
self.plus = plus |
|
if self.entities and self.plus: |
|
for i in labels: |
|
if i <= len(self.entities): |
|
new_labels.append(self.entities[i - self.plus]) |
|
else: |
|
new_labels.append('object') |
|
|
|
else: |
|
new_labels = ['object' for i in labels] |
|
boxes = predictions.bbox |
|
|
|
template = "{}:{:.2f}" |
|
previous_locations = [] |
|
object_names = [] |
|
for box, score, label in zip(boxes, scores, new_labels): |
|
x, y = box[:2] |
|
s = template.format(label, score).replace("_", " ").replace("(", "").replace(")", "") |
|
for x_prev, y_prev in previous_locations: |
|
if abs(x - x_prev) < abs(text_offset) and abs(y - y_prev) < abs(text_offset): |
|
y -= text_offset |
|
object_names.append(s) |
|
cv2.putText( |
|
image, s, (int(x), int(y) - text_offset_original), cv2.FONT_HERSHEY_SIMPLEX, text_size, |
|
(255, 255, 255), text_pixel, cv2.LINE_AA |
|
) |
|
previous_locations.append((int(x), int(y))) |
|
|
|
return image, object_names |
|
|
|
def overlay_mask(self, image, predictions): |
|
masks = predictions.get_field("mask").numpy() |
|
labels = predictions.get_field("labels") |
|
|
|
colors = self.compute_colors_for_labels(labels).tolist() |
|
|
|
|
|
|
|
|
|
|
|
for mask, color in zip(masks, colors): |
|
thresh = mask[0, :, :, None].astype(np.uint8) |
|
contours, hierarchy = cv2_util.findContours( |
|
thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE |
|
) |
|
image = cv2.drawContours(image, contours, -1, color, 2) |
|
|
|
composite = image |
|
|
|
return composite |
|
|
|
def create_mask_montage(self, image, predictions): |
|
masks = predictions.get_field("mask") |
|
masks_per_dim = self.masks_per_dim |
|
masks = L.interpolate( |
|
masks.float(), scale_factor=1 / masks_per_dim |
|
).byte() |
|
height, width = masks.shape[-2:] |
|
max_masks = masks_per_dim ** 2 |
|
masks = masks[:max_masks] |
|
|
|
if len(masks) < max_masks: |
|
masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8) |
|
masks_padded[: len(masks)] = masks |
|
masks = masks_padded |
|
masks = masks.reshape(masks_per_dim, masks_per_dim, height, width) |
|
result = torch.zeros( |
|
(masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8 |
|
) |
|
for y in range(masks_per_dim): |
|
start_y = y * height |
|
end_y = (y + 1) * height |
|
for x in range(masks_per_dim): |
|
start_x = x * width |
|
end_x = (x + 1) * width |
|
result[start_y:end_y, start_x:end_x] = masks[y, x] |
|
|
|
return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET), None |
|
|
|
|
|
def create_positive_map_label_to_token_from_positive_map(positive_map, plus=0): |
|
positive_map_label_to_token = {} |
|
for i in range(len(positive_map)): |
|
positive_map_label_to_token[i + plus] = torch.nonzero(positive_map[i], as_tuple=True)[0].tolist() |
|
return positive_map_label_to_token |
|
|
|
|
|
def create_positive_map(tokenized, tokens_positive): |
|
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j""" |
|
positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float) |
|
|
|
for j, tok_list in enumerate(tokens_positive): |
|
for (beg, end) in tok_list: |
|
try: |
|
beg_pos = tokenized.char_to_token(beg) |
|
end_pos = tokenized.char_to_token(end - 1) |
|
except Exception as e: |
|
print("beg:", beg, "end:", end) |
|
print("token_positive:", tokens_positive) |
|
|
|
raise e |
|
if beg_pos is None: |
|
try: |
|
beg_pos = tokenized.char_to_token(beg + 1) |
|
if beg_pos is None: |
|
beg_pos = tokenized.char_to_token(beg + 2) |
|
except: |
|
beg_pos = None |
|
if end_pos is None: |
|
try: |
|
end_pos = tokenized.char_to_token(end - 2) |
|
if end_pos is None: |
|
end_pos = tokenized.char_to_token(end - 3) |
|
except: |
|
end_pos = None |
|
if beg_pos is None or end_pos is None: |
|
continue |
|
|
|
assert beg_pos is not None and end_pos is not None |
|
positive_map[j, beg_pos: end_pos + 1].fill_(1) |
|
return positive_map / (positive_map.sum(-1)[:, None] + 1e-6) |
|
|
|
|
|
def find_noun_phrases(caption: str) -> List[str]: |
|
caption = caption.lower() |
|
tokens = nltk.word_tokenize(caption) |
|
pos_tags = nltk.pos_tag(tokens) |
|
|
|
grammar = "NP: {<DT>?<JJ.*>*<NN.*>+}" |
|
cp = nltk.RegexpParser(grammar) |
|
result = cp.parse(pos_tags) |
|
|
|
noun_phrases = list() |
|
for subtree in result.subtrees(): |
|
if subtree.label() == 'NP': |
|
noun_phrases.append(' '.join(t[0] for t in subtree.leaves())) |
|
|
|
return noun_phrases |
|
|
|
|
|
def remove_punctuation(text: str) -> str: |
|
punct = ['|', ':', ';', '@', '(', ')', '[', ']', '{', '}', '^', |
|
'\'', '\"', '’', '`', '?', '$', '%', '#', '!', '&', '*', '+', ',', '.' |
|
] |
|
for p in punct: |
|
text = text.replace(p, '') |
|
return text.strip() |
|
|