|
|
|
import datetime |
|
import logging |
|
import time |
|
import random |
|
import torch |
|
import torch.distributed as dist |
|
from maskrcnn_benchmark.utils.comm import get_world_size, synchronize, broadcast_data |
|
from maskrcnn_benchmark.utils.metric_logger import MetricLogger |
|
from maskrcnn_benchmark.utils.ema import ModelEma |
|
|
|
|
|
def reduce_loss_dict(loss_dict): |
|
""" |
|
Reduce the loss dictionary from all processes so that process with rank |
|
0 has the averaged results. Returns a dict with the same fields as |
|
loss_dict, after reduction. |
|
""" |
|
world_size = get_world_size() |
|
if world_size < 2: |
|
return loss_dict |
|
with torch.no_grad(): |
|
loss_names = [] |
|
all_losses = [] |
|
for k in sorted(loss_dict.keys()): |
|
loss_names.append(k) |
|
all_losses.append(loss_dict[k]) |
|
all_losses = torch.stack(all_losses, dim=0) |
|
dist.reduce(all_losses, dst=0) |
|
if dist.get_rank() == 0: |
|
|
|
|
|
all_losses /= world_size |
|
reduced_losses = {k: v for k, v in zip(loss_names, all_losses)} |
|
return reduced_losses |
|
|
|
|
|
def do_train( |
|
cfg, |
|
model, |
|
data_loader, |
|
optimizer, |
|
scheduler, |
|
checkpointer, |
|
device, |
|
checkpoint_period, |
|
arguments, |
|
rngs=None |
|
): |
|
logger = logging.getLogger("maskrcnn_benchmark.trainer") |
|
logger.info("Start training") |
|
meters = MetricLogger(delimiter=" ") |
|
max_iter = len(data_loader) |
|
start_iter = arguments["iteration"] |
|
model.train() |
|
model_ema = None |
|
if cfg.SOLVER.MODEL_EMA>0: |
|
model_ema = ModelEma(model, decay=cfg.SOLVER.MODEL_EMA) |
|
start_training_time = time.time() |
|
end = time.time() |
|
|
|
for iteration, (images, targets, _) in enumerate(data_loader, start_iter): |
|
|
|
if any(len(target) < 1 for target in targets): |
|
logger.error("Iteration={iteration + 1} || Image Ids used for training {_} || targets Length={[len(target) for target in targets]}" ) |
|
continue |
|
data_time = time.time() - end |
|
iteration = iteration + 1 |
|
arguments["iteration"] = iteration |
|
|
|
images = images.to(device) |
|
targets = [target.to(device) for target in targets] |
|
|
|
|
|
if rngs is None: |
|
if isinstance(model, torch.nn.parallel.DistributedDataParallel): |
|
mix_nums = model.module.mix_nums |
|
else: |
|
mix_nums = model.mix_nums |
|
rngs = [random.randint(0, mix-1) for mix in mix_nums] |
|
rngs = broadcast_data(rngs) |
|
|
|
for param in model.parameters(): |
|
param.requires_grad = False |
|
loss_dict = model(images, targets, rngs) |
|
|
|
losses = sum(loss for loss in loss_dict.values()) |
|
|
|
|
|
loss_dict_reduced = reduce_loss_dict(loss_dict) |
|
losses_reduced = sum(loss for loss in loss_dict_reduced.values()) |
|
meters.update(loss=losses_reduced, **loss_dict_reduced) |
|
|
|
optimizer.zero_grad() |
|
losses.backward() |
|
optimizer.step() |
|
scheduler.step() |
|
|
|
if model_ema is not None: |
|
model_ema.update(model) |
|
arguments["model_ema"] = model_ema.state_dict() |
|
|
|
batch_time = time.time() - end |
|
end = time.time() |
|
meters.update(time=batch_time, data=data_time) |
|
|
|
eta_seconds = meters.time.global_avg * (max_iter - iteration) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
|
|
if iteration % 20 == 0 or iteration == max_iter: |
|
logger.info( |
|
meters.delimiter.join( |
|
[ |
|
"eta: {eta}", |
|
"iter: {iter}", |
|
"{meters}", |
|
"lr: {lr:.6f}", |
|
"max mem: {memory:.0f}", |
|
] |
|
).format( |
|
eta=eta_string, |
|
iter=iteration, |
|
meters=str(meters), |
|
lr=optimizer.param_groups[0]["lr"], |
|
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0, |
|
) |
|
) |
|
if iteration % checkpoint_period == 0: |
|
checkpointer.save("model_{:07d}".format(iteration), **arguments) |
|
if iteration == max_iter: |
|
if model_ema is not None: |
|
model.load_state_dict(model_ema.state_dict()) |
|
checkpointer.save("model_final", **arguments) |
|
|
|
total_training_time = time.time() - start_training_time |
|
total_time_str = str(datetime.timedelta(seconds=total_training_time)) |
|
logger.info( |
|
"Total training time: {} ({:.4f} s / it)".format( |
|
total_time_str, total_training_time / (max_iter) |
|
) |
|
) |
|
|