|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .deform_conv import DeformConv2d |
|
|
|
def add_conv(in_ch, out_ch, ksize, stride, leaky=True): |
|
""" |
|
Add a conv2d / batchnorm / leaky ReLU block. |
|
Args: |
|
in_ch (int): number of input channels of the convolution layer. |
|
out_ch (int): number of output channels of the convolution layer. |
|
ksize (int): kernel size of the convolution layer. |
|
stride (int): stride of the convolution layer. |
|
Returns: |
|
stage (Sequential) : Sequential layers composing a convolution block. |
|
""" |
|
stage = nn.Sequential() |
|
pad = (ksize - 1) // 2 |
|
stage.add_module('conv', nn.Conv2d(in_channels=in_ch, |
|
out_channels=out_ch, kernel_size=ksize, stride=stride, |
|
padding=pad, bias=False)) |
|
stage.add_module('batch_norm', nn.BatchNorm2d(out_ch)) |
|
if leaky: |
|
stage.add_module('leaky', nn.LeakyReLU(0.1)) |
|
else: |
|
stage.add_module('relu6', nn.ReLU6(inplace=True)) |
|
return stage |
|
|
|
|
|
class upsample(nn.Module): |
|
__constants__ = ['size', 'scale_factor', 'mode', 'align_corners', 'name'] |
|
|
|
def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=None): |
|
super(upsample, self).__init__() |
|
self.name = type(self).__name__ |
|
self.size = size |
|
self.scale_factor = scale_factor |
|
self.mode = mode |
|
self.align_corners = align_corners |
|
|
|
def forward(self, input): |
|
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners) |
|
|
|
def extra_repr(self): |
|
if self.scale_factor is not None: |
|
info = 'scale_factor=' + str(self.scale_factor) |
|
else: |
|
info = 'size=' + str(self.size) |
|
info += ', mode=' + self.mode |
|
return info |
|
|
|
class SPPLayer(nn.Module): |
|
def __init__(self): |
|
super(SPPLayer, self).__init__() |
|
|
|
def forward(self, x): |
|
x_1 = x |
|
x_2 = F.max_pool2d(x, 5, stride=1, padding=2) |
|
x_3 = F.max_pool2d(x, 9, stride=1, padding=4) |
|
x_4 = F.max_pool2d(x, 13, stride=1, padding=6) |
|
out = torch.cat((x_1, x_2, x_3, x_4),dim=1) |
|
return out |
|
|
|
class DropBlock(nn.Module): |
|
def __init__(self, block_size=7, keep_prob=0.9): |
|
super(DropBlock, self).__init__() |
|
self.block_size = block_size |
|
self.keep_prob = keep_prob |
|
self.gamma = None |
|
self.kernel_size = (block_size, block_size) |
|
self.stride = (1, 1) |
|
self.padding = (block_size//2, block_size//2) |
|
|
|
def reset(self, block_size, keep_prob): |
|
self.block_size = block_size |
|
self.keep_prob = keep_prob |
|
self.gamma = None |
|
self.kernel_size = (block_size, block_size) |
|
self.stride = (1, 1) |
|
self.padding = (block_size//2, block_size//2) |
|
|
|
def calculate_gamma(self, x): |
|
return (1-self.keep_prob) * x.shape[-1]**2/ \ |
|
(self.block_size**2 * (x.shape[-1] - self.block_size + 1)**2) |
|
|
|
def forward(self, x): |
|
if (not self.training or self.keep_prob==1): |
|
return x |
|
if self.gamma is None: |
|
self.gamma = self.calculate_gamma(x) |
|
if x.type() == 'torch.cuda.HalfTensor': |
|
FP16 = True |
|
x = x.float() |
|
else: |
|
FP16 = False |
|
p = torch.ones_like(x) * (self.gamma) |
|
mask = 1 - torch.nn.functional.max_pool2d(torch.bernoulli(p), |
|
self.kernel_size, |
|
self.stride, |
|
self.padding) |
|
|
|
out = mask * x * (mask.numel()/mask.sum()) |
|
|
|
if FP16: |
|
out = out.half() |
|
return out |
|
|
|
class resblock(nn.Module): |
|
""" |
|
Sequential residual blocks each of which consists of \ |
|
two convolution layers. |
|
Args: |
|
ch (int): number of input and output channels. |
|
nblocks (int): number of residual blocks. |
|
shortcut (bool): if True, residual tensor addition is enabled. |
|
""" |
|
def __init__(self, ch, nblocks=1, shortcut=True): |
|
|
|
super().__init__() |
|
self.shortcut = shortcut |
|
self.module_list = nn.ModuleList() |
|
for i in range(nblocks): |
|
resblock_one = nn.ModuleList() |
|
resblock_one.append(add_conv(ch, ch//2, 1, 1)) |
|
resblock_one.append(add_conv(ch//2, ch, 3, 1)) |
|
self.module_list.append(resblock_one) |
|
|
|
def forward(self, x): |
|
for module in self.module_list: |
|
h = x |
|
for res in module: |
|
h = res(h) |
|
x = x + h if self.shortcut else h |
|
return x |
|
|
|
|
|
class RFBblock(nn.Module): |
|
def __init__(self,in_ch,residual=False): |
|
super(RFBblock, self).__init__() |
|
inter_c = in_ch // 4 |
|
self.branch_0 = nn.Sequential( |
|
nn.Conv2d(in_channels=in_ch, out_channels=inter_c, kernel_size=1, stride=1, padding=0), |
|
) |
|
self.branch_1 = nn.Sequential( |
|
nn.Conv2d(in_channels=in_ch, out_channels=inter_c, kernel_size=1, stride=1, padding=0), |
|
nn.Conv2d(in_channels=inter_c, out_channels=inter_c, kernel_size=3, stride=1, padding=1) |
|
) |
|
self.branch_2 = nn.Sequential( |
|
nn.Conv2d(in_channels=in_ch, out_channels=inter_c, kernel_size=1, stride=1, padding=0), |
|
nn.Conv2d(in_channels=inter_c, out_channels=inter_c, kernel_size=3, stride=1, padding=1), |
|
nn.Conv2d(in_channels=inter_c, out_channels=inter_c, kernel_size=3, stride=1, dilation=2, padding=2) |
|
) |
|
self.branch_3 = nn.Sequential( |
|
nn.Conv2d(in_channels=in_ch, out_channels=inter_c, kernel_size=1, stride=1, padding=0), |
|
nn.Conv2d(in_channels=inter_c, out_channels=inter_c, kernel_size=5, stride=1, padding=2), |
|
nn.Conv2d(in_channels=inter_c, out_channels=inter_c, kernel_size=3, stride=1, dilation=3, padding=3) |
|
) |
|
self.residual= residual |
|
|
|
def forward(self,x): |
|
x_0 = self.branch_0(x) |
|
x_1 = self.branch_1(x) |
|
x_2 = self.branch_2(x) |
|
x_3 = self.branch_3(x) |
|
out = torch.cat((x_0,x_1,x_2,x_3),1) |
|
if self.residual: |
|
out +=x |
|
return out |
|
|
|
|
|
class FeatureAdaption(nn.Module): |
|
def __init__(self, in_ch, out_ch, n_anchors, rfb=False, sep=False): |
|
super(FeatureAdaption, self).__init__() |
|
if sep: |
|
self.sep=True |
|
else: |
|
self.sep=False |
|
self.conv_offset = nn.Conv2d(in_channels=2*n_anchors, |
|
out_channels=2*9*n_anchors, groups = n_anchors, kernel_size=1,stride=1,padding=0) |
|
self.dconv = DeformConv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=3, stride=1, |
|
padding=1, deformable_groups=n_anchors) |
|
self.rfb=None |
|
if rfb: |
|
self.rfb = RFBblock(out_ch) |
|
|
|
def forward(self, input, wh_pred): |
|
|
|
|
|
if self.sep: |
|
return input |
|
if self.rfb is not None: |
|
input = self.rfb(input) |
|
wh_pred_new = wh_pred.detach() |
|
offset = self.conv_offset(wh_pred_new) |
|
out = self.dconv(input, offset) |
|
return out |
|
|
|
|
|
class ASFFmobile(nn.Module): |
|
def __init__(self, level, rfb=False, vis=False): |
|
super(ASFFmobile, self).__init__() |
|
self.level = level |
|
self.dim = [512, 256, 128] |
|
self.inter_dim = self.dim[self.level] |
|
if level==0: |
|
self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2, leaky=False) |
|
self.stride_level_2 = add_conv(128, self.inter_dim, 3, 2, leaky=False) |
|
self.expand = add_conv(self.inter_dim, 1024, 3, 1, leaky=False) |
|
elif level==1: |
|
self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1, leaky=False) |
|
self.stride_level_2 = add_conv(128, self.inter_dim, 3, 2, leaky=False) |
|
self.expand = add_conv(self.inter_dim, 512, 3, 1, leaky=False) |
|
elif level==2: |
|
self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1, leaky=False) |
|
self.compress_level_1 = add_conv(256, self.inter_dim, 1, 1, leaky=False) |
|
self.expand = add_conv(self.inter_dim, 256, 3, 1,leaky=False) |
|
|
|
compress_c = 8 if rfb else 16 |
|
|
|
self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1, leaky=False) |
|
self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1, leaky=False) |
|
self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1, leaky=False) |
|
|
|
self.weight_levels = nn.Conv2d(compress_c*3, 3, kernel_size=1, stride=1, padding=0) |
|
self.vis= vis |
|
|
|
|
|
def forward(self, x_level_0, x_level_1, x_level_2): |
|
if self.level==0: |
|
level_0_resized = x_level_0 |
|
level_1_resized = self.stride_level_1(x_level_1) |
|
|
|
level_2_downsampled_inter =F.max_pool2d(x_level_2, 3, stride=2, padding=1) |
|
level_2_resized = self.stride_level_2(level_2_downsampled_inter) |
|
|
|
elif self.level==1: |
|
level_0_compressed = self.compress_level_0(x_level_0) |
|
level_0_resized =F.interpolate(level_0_compressed, scale_factor=2, mode='nearest') |
|
level_1_resized =x_level_1 |
|
level_2_resized =self.stride_level_2(x_level_2) |
|
elif self.level==2: |
|
level_0_compressed = self.compress_level_0(x_level_0) |
|
level_0_resized =F.interpolate(level_0_compressed, scale_factor=4, mode='nearest') |
|
level_1_compressed = self.compress_level_1(x_level_1) |
|
level_1_resized =F.interpolate(level_1_compressed, scale_factor=2, mode='nearest') |
|
level_2_resized =x_level_2 |
|
|
|
level_0_weight_v = self.weight_level_0(level_0_resized) |
|
level_1_weight_v = self.weight_level_1(level_1_resized) |
|
level_2_weight_v = self.weight_level_2(level_2_resized) |
|
levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v),1) |
|
levels_weight = self.weight_levels(levels_weight_v) |
|
levels_weight = F.softmax(levels_weight, dim=1) |
|
|
|
fused_out_reduced = level_0_resized * levels_weight[:,0:1,:,:]+ \ |
|
level_1_resized * levels_weight[:,1:2,:,:]+ \ |
|
level_2_resized * levels_weight[:,2:,:,:] |
|
|
|
out = self.expand(fused_out_reduced) |
|
|
|
if self.vis: |
|
return out, levels_weight, fused_out_reduced.sum(dim=1) |
|
else: |
|
return out |
|
|
|
|
|
class ASFF(nn.Module): |
|
def __init__(self, level, rfb=False, vis=False): |
|
super(ASFF, self).__init__() |
|
self.level = level |
|
self.dim = [512, 256, 256] |
|
self.inter_dim = self.dim[self.level] |
|
if level==0: |
|
self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2) |
|
self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2) |
|
self.expand = add_conv(self.inter_dim, 1024, 3, 1) |
|
elif level==1: |
|
self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1) |
|
self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2) |
|
self.expand = add_conv(self.inter_dim, 512, 3, 1) |
|
elif level==2: |
|
self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1) |
|
self.expand = add_conv(self.inter_dim, 256, 3, 1) |
|
|
|
compress_c = 8 if rfb else 16 |
|
|
|
self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1) |
|
self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1) |
|
self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1) |
|
|
|
self.weight_levels = nn.Conv2d(compress_c*3, 3, kernel_size=1, stride=1, padding=0) |
|
self.vis= vis |
|
|
|
|
|
def forward(self, x_level_0, x_level_1, x_level_2): |
|
if self.level==0: |
|
level_0_resized = x_level_0 |
|
level_1_resized = self.stride_level_1(x_level_1) |
|
|
|
level_2_downsampled_inter =F.max_pool2d(x_level_2, 3, stride=2, padding=1) |
|
level_2_resized = self.stride_level_2(level_2_downsampled_inter) |
|
|
|
elif self.level==1: |
|
level_0_compressed = self.compress_level_0(x_level_0) |
|
level_0_resized =F.interpolate(level_0_compressed, scale_factor=2, mode='nearest') |
|
level_1_resized =x_level_1 |
|
level_2_resized =self.stride_level_2(x_level_2) |
|
elif self.level==2: |
|
level_0_compressed = self.compress_level_0(x_level_0) |
|
level_0_resized =F.interpolate(level_0_compressed, scale_factor=4, mode='nearest') |
|
level_1_resized =F.interpolate(x_level_1, scale_factor=2, mode='nearest') |
|
level_2_resized =x_level_2 |
|
|
|
level_0_weight_v = self.weight_level_0(level_0_resized) |
|
level_1_weight_v = self.weight_level_1(level_1_resized) |
|
level_2_weight_v = self.weight_level_2(level_2_resized) |
|
levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v),1) |
|
levels_weight = self.weight_levels(levels_weight_v) |
|
levels_weight = F.softmax(levels_weight, dim=1) |
|
|
|
fused_out_reduced = level_0_resized * levels_weight[:,0:1,:,:]+ \ |
|
level_1_resized * levels_weight[:,1:2,:,:]+ \ |
|
level_2_resized * levels_weight[:,2:,:,:] |
|
|
|
out = self.expand(fused_out_reduced) |
|
|
|
if self.vis: |
|
return out, levels_weight, fused_out_reduced.sum(dim=1) |
|
else: |
|
return out |
|
|
|
def make_divisible(v, divisor, min_value=None): |
|
""" |
|
This function is taken from the original tf repo. |
|
It ensures that all layers have a channel number that is divisible by 8 |
|
It can be seen here: |
|
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py |
|
:param v: |
|
:param divisor: |
|
:param min_value: |
|
:return: |
|
""" |
|
if min_value is None: |
|
min_value = divisor |
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
|
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
|
|
class ConvBNReLU(nn.Sequential): |
|
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): |
|
padding = (kernel_size - 1) // 2 |
|
super(ConvBNReLU, self).__init__( |
|
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), |
|
nn.BatchNorm2d(out_planes), |
|
nn.ReLU6(inplace=True) |
|
) |
|
|
|
def add_sepconv(in_ch, out_ch, ksize, stride): |
|
|
|
stage = nn.Sequential() |
|
pad = (ksize - 1) // 2 |
|
stage.add_module('sepconv', nn.Conv2d(in_channels=in_ch, |
|
out_channels=in_ch, kernel_size=ksize, stride=stride, |
|
padding=pad, groups=in_ch, bias=False)) |
|
stage.add_module('sepbn', nn.BatchNorm2d(in_ch)) |
|
stage.add_module('seprelu6', nn.ReLU6(inplace=True)) |
|
stage.add_module('ptconv', nn.Conv2d(in_ch, out_ch, 1, 1, 0, bias=False)) |
|
stage.add_module('ptbn', nn.BatchNorm2d(out_ch)) |
|
stage.add_module('ptrelu6', nn.ReLU6(inplace=True)) |
|
return stage |
|
|
|
class InvertedResidual(nn.Module): |
|
def __init__(self, inp, oup, stride, expand_ratio): |
|
super(InvertedResidual, self).__init__() |
|
self.stride = stride |
|
assert stride in [1, 2] |
|
|
|
hidden_dim = int(round(inp * expand_ratio)) |
|
self.use_res_connect = self.stride == 1 and inp == oup |
|
|
|
layers = [] |
|
if expand_ratio != 1: |
|
|
|
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) |
|
layers.extend([ |
|
|
|
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), |
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), |
|
nn.BatchNorm2d(oup), |
|
]) |
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
if self.use_res_connect: |
|
return x + self.conv(x) |
|
else: |
|
return self.conv(x) |
|
|
|
class ressepblock(nn.Module): |
|
def __init__(self, ch, out_ch, in_ch=None, shortcut=True): |
|
|
|
super().__init__() |
|
self.shortcut = shortcut |
|
self.module_list = nn.ModuleList() |
|
in_ch = ch//2 if in_ch==None else in_ch |
|
resblock_one = nn.ModuleList() |
|
resblock_one.append(add_conv(ch, in_ch, 1, 1, leaky=False)) |
|
resblock_one.append(add_conv(in_ch, out_ch, 3, 1,leaky=False)) |
|
self.module_list.append(resblock_one) |
|
|
|
def forward(self, x): |
|
for module in self.module_list: |
|
h = x |
|
for res in module: |
|
h = res(h) |
|
x = x + h if self.shortcut else h |
|
return x |
|
|
|
|