|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
|
|
class DropBlock2D(nn.Module): |
|
r"""Randomly zeroes 2D spatial blocks of the input tensor. |
|
|
|
As described in the paper |
|
`DropBlock: A regularization method for convolutional networks`_ , |
|
dropping whole blocks of feature map allows to remove semantic |
|
information as compared to regular dropout. |
|
|
|
Args: |
|
drop_prob (float): probability of an element to be dropped. |
|
block_size (int): size of the block to drop |
|
|
|
Shape: |
|
- Input: `(N, C, H, W)` |
|
- Output: `(N, C, H, W)` |
|
|
|
.. _DropBlock: A regularization method for convolutional networks: |
|
https://arxiv.org/abs/1810.12890 |
|
|
|
""" |
|
|
|
def __init__(self, drop_prob, block_size): |
|
super(DropBlock2D, self).__init__() |
|
|
|
self.drop_prob = drop_prob |
|
self.block_size = block_size |
|
|
|
def forward(self, x): |
|
|
|
|
|
assert x.dim() == 4, \ |
|
"Expected input with 4 dimensions (bsize, channels, height, width)" |
|
|
|
if not self.training or self.drop_prob == 0.: |
|
return x |
|
else: |
|
|
|
gamma = self._compute_gamma(x) |
|
|
|
|
|
mask = (torch.rand(x.shape[0], *x.shape[2:]) < gamma).float() |
|
|
|
|
|
mask = mask.to(x.device) |
|
|
|
|
|
block_mask = self._compute_block_mask(mask) |
|
|
|
|
|
out = x * block_mask[:, None, :, :] |
|
|
|
|
|
out = out * block_mask.numel() / block_mask.sum() |
|
|
|
return out |
|
|
|
def _compute_block_mask(self, mask): |
|
block_mask = F.max_pool2d(input=mask[:, None, :, :], |
|
kernel_size=(self.block_size, self.block_size), |
|
stride=(1, 1), |
|
padding=self.block_size // 2) |
|
|
|
if self.block_size % 2 == 0: |
|
block_mask = block_mask[:, :, :-1, :-1] |
|
|
|
block_mask = 1 - block_mask.squeeze(1) |
|
|
|
return block_mask |
|
|
|
def _compute_gamma(self, x): |
|
return self.drop_prob / (self.block_size ** 2) |
|
|
|
|
|
class DropBlock3D(DropBlock2D): |
|
r"""Randomly zeroes 3D spatial blocks of the input tensor. |
|
|
|
An extension to the concept described in the paper |
|
`DropBlock: A regularization method for convolutional networks`_ , |
|
dropping whole blocks of feature map allows to remove semantic |
|
information as compared to regular dropout. |
|
|
|
Args: |
|
drop_prob (float): probability of an element to be dropped. |
|
block_size (int): size of the block to drop |
|
|
|
Shape: |
|
- Input: `(N, C, D, H, W)` |
|
- Output: `(N, C, D, H, W)` |
|
|
|
.. _DropBlock: A regularization method for convolutional networks: |
|
https://arxiv.org/abs/1810.12890 |
|
|
|
""" |
|
|
|
def __init__(self, drop_prob, block_size): |
|
super(DropBlock3D, self).__init__(drop_prob, block_size) |
|
|
|
def forward(self, x): |
|
|
|
|
|
assert x.dim() == 5, \ |
|
"Expected input with 5 dimensions (bsize, channels, depth, height, width)" |
|
|
|
if not self.training or self.drop_prob == 0.: |
|
return x |
|
else: |
|
|
|
gamma = self._compute_gamma(x) |
|
|
|
|
|
mask = (torch.rand(x.shape[0], *x.shape[2:]) < gamma).float() |
|
|
|
|
|
mask = mask.to(x.device) |
|
|
|
|
|
block_mask = self._compute_block_mask(mask) |
|
|
|
|
|
out = x * block_mask[:, None, :, :, :] |
|
|
|
|
|
out = out * block_mask.numel() / block_mask.sum() |
|
|
|
return out |
|
|
|
def _compute_block_mask(self, mask): |
|
block_mask = F.max_pool3d(input=mask[:, None, :, :, :], |
|
kernel_size=(self.block_size, self.block_size, self.block_size), |
|
stride=(1, 1, 1), |
|
padding=self.block_size // 2) |
|
|
|
if self.block_size % 2 == 0: |
|
block_mask = block_mask[:, :, :-1, :-1, :-1] |
|
|
|
block_mask = 1 - block_mask.squeeze(1) |
|
|
|
return block_mask |
|
|
|
def _compute_gamma(self, x): |
|
return self.drop_prob / (self.block_size ** 3) |