|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from .deform_conv import ModulatedDeformConv |
|
from .dyrelu import h_sigmoid, DYReLU |
|
|
|
|
|
class Conv3x3Norm(torch.nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
deformable=False, |
|
use_gn=False): |
|
super(Conv3x3Norm, self).__init__() |
|
|
|
if deformable: |
|
self.conv = ModulatedDeformConv(in_channels, out_channels, kernel_size=3, stride=stride, padding=1) |
|
else: |
|
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1) |
|
|
|
if use_gn: |
|
self.bn = nn.GroupNorm(num_groups=16, num_channels=out_channels) |
|
else: |
|
self.bn = None |
|
|
|
def forward(self, input, **kwargs): |
|
x = self.conv(input, **kwargs) |
|
if self.bn: |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
class DyConv(nn.Module): |
|
def __init__(self, |
|
in_channels=256, |
|
out_channels=256, |
|
conv_func=Conv3x3Norm, |
|
use_dyfuse=True, |
|
use_dyrelu=False, |
|
use_deform=False |
|
): |
|
super(DyConv, self).__init__() |
|
|
|
self.DyConv = nn.ModuleList() |
|
self.DyConv.append(conv_func(in_channels, out_channels, 1)) |
|
self.DyConv.append(conv_func(in_channels, out_channels, 1)) |
|
self.DyConv.append(conv_func(in_channels, out_channels, 2)) |
|
|
|
if use_dyfuse: |
|
self.AttnConv = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels, 1, kernel_size=1), |
|
nn.ReLU(inplace=True)) |
|
self.h_sigmoid = h_sigmoid() |
|
else: |
|
self.AttnConv = None |
|
|
|
if use_dyrelu: |
|
self.relu = DYReLU(in_channels, out_channels) |
|
else: |
|
self.relu = nn.ReLU() |
|
|
|
if use_deform: |
|
self.offset = nn.Conv2d(in_channels, 27, kernel_size=3, stride=1, padding=1) |
|
else: |
|
self.offset = None |
|
|
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
for m in self.DyConv.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.normal_(m.weight.data, 0, 0.01) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
if self.AttnConv is not None: |
|
for m in self.AttnConv.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.normal_(m.weight.data, 0, 0.01) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x): |
|
next_x = [] |
|
for level, feature in enumerate(x): |
|
|
|
conv_args = dict() |
|
if self.offset is not None: |
|
offset_mask = self.offset(feature) |
|
offset = offset_mask[:, :18, :, :] |
|
mask = offset_mask[:, 18:, :, :].sigmoid() |
|
conv_args = dict(offset=offset, mask=mask) |
|
|
|
temp_fea = [self.DyConv[1](feature, **conv_args)] |
|
|
|
if level > 0: |
|
temp_fea.append(self.DyConv[2](x[level - 1], **conv_args)) |
|
if level < len(x) - 1: |
|
temp_fea.append(F.upsample_bilinear(self.DyConv[0](x[level + 1], **conv_args), |
|
size=[feature.size(2), feature.size(3)])) |
|
mean_fea = torch.mean(torch.stack(temp_fea), dim=0, keepdim=False) |
|
|
|
if self.AttnConv is not None: |
|
attn_fea = [] |
|
res_fea = [] |
|
for fea in temp_fea: |
|
res_fea.append(fea) |
|
attn_fea.append(self.AttnConv(fea)) |
|
|
|
res_fea = torch.stack(res_fea) |
|
spa_pyr_attn = self.h_sigmoid(torch.stack(attn_fea)) |
|
|
|
mean_fea = torch.mean(res_fea * spa_pyr_attn, dim=0, keepdim=False) |
|
|
|
next_x.append(self.relu(mean_fea)) |
|
|
|
return next_x |
|
|
|
|
|
class DyHead(nn.Module): |
|
def __init__(self, cfg, in_channels): |
|
super(DyHead, self).__init__() |
|
self.cfg = cfg |
|
channels = cfg.MODEL.DYHEAD.CHANNELS |
|
use_gn = cfg.MODEL.DYHEAD.USE_GN |
|
use_dyrelu = cfg.MODEL.DYHEAD.USE_DYRELU |
|
use_dyfuse = cfg.MODEL.DYHEAD.USE_DYFUSE |
|
use_deform = cfg.MODEL.DYHEAD.USE_DFCONV |
|
|
|
conv_func = lambda i,o,s : Conv3x3Norm(i,o,s,deformable=use_deform,use_gn=use_gn) |
|
|
|
dyhead_tower = [] |
|
for i in range(cfg.MODEL.DYHEAD.NUM_CONVS): |
|
dyhead_tower.append( |
|
DyConv( |
|
in_channels if i == 0 else channels, |
|
channels, |
|
conv_func=conv_func, |
|
use_dyrelu=use_dyrelu, |
|
use_dyfuse=use_dyfuse, |
|
use_deform=use_deform |
|
) |
|
) |
|
|
|
self.add_module('dyhead_tower', nn.Sequential(*dyhead_tower)) |
|
|
|
def forward(self, x): |
|
dyhead_tower = self.dyhead_tower(x) |
|
return dyhead_tower |