|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
def _make_divisible(v, divisor, min_value=None): |
|
if min_value is None: |
|
min_value = divisor |
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
|
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
|
|
class swish(nn.Module): |
|
def forward(self, x): |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
class h_swish(nn.Module): |
|
def __init__(self, inplace=False): |
|
super(h_swish, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0 |
|
|
|
|
|
class h_sigmoid(nn.Module): |
|
def __init__(self, inplace=True, h_max=1): |
|
super(h_sigmoid, self).__init__() |
|
self.relu = nn.ReLU6(inplace=inplace) |
|
self.h_max = h_max |
|
|
|
def forward(self, x): |
|
return self.relu(x + 3) * self.h_max / 6 |
|
|
|
|
|
class DYReLU(nn.Module): |
|
def __init__(self, inp, oup, reduction=4, lambda_a=1.0, K2=True, use_bias=True, use_spatial=False, |
|
init_a=[1.0, 0.0], init_b=[0.0, 0.0]): |
|
super(DYReLU, self).__init__() |
|
self.oup = oup |
|
self.lambda_a = lambda_a * 2 |
|
self.K2 = K2 |
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
|
|
self.use_bias = use_bias |
|
if K2: |
|
self.exp = 4 if use_bias else 2 |
|
else: |
|
self.exp = 2 if use_bias else 1 |
|
self.init_a = init_a |
|
self.init_b = init_b |
|
|
|
|
|
if reduction == 4: |
|
squeeze = inp // reduction |
|
else: |
|
squeeze = _make_divisible(inp // reduction, 4) |
|
|
|
|
|
|
|
self.fc = nn.Sequential( |
|
nn.Linear(inp, squeeze), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(squeeze, oup * self.exp), |
|
h_sigmoid() |
|
) |
|
if use_spatial: |
|
self.spa = nn.Sequential( |
|
nn.Conv2d(inp, 1, kernel_size=1), |
|
nn.BatchNorm2d(1), |
|
) |
|
else: |
|
self.spa = None |
|
|
|
def forward(self, x): |
|
if isinstance(x, list): |
|
x_in = x[0] |
|
x_out = x[1] |
|
else: |
|
x_in = x |
|
x_out = x |
|
b, c, h, w = x_in.size() |
|
y = self.avg_pool(x_in).view(b, c) |
|
y = self.fc(y).view(b, self.oup * self.exp, 1, 1) |
|
if self.exp == 4: |
|
a1, b1, a2, b2 = torch.split(y, self.oup, dim=1) |
|
a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0] |
|
a2 = (a2 - 0.5) * self.lambda_a + self.init_a[1] |
|
|
|
b1 = b1 - 0.5 + self.init_b[0] |
|
b2 = b2 - 0.5 + self.init_b[1] |
|
out = torch.max(x_out * a1 + b1, x_out * a2 + b2) |
|
elif self.exp == 2: |
|
if self.use_bias: |
|
a1, b1 = torch.split(y, self.oup, dim=1) |
|
a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0] |
|
b1 = b1 - 0.5 + self.init_b[0] |
|
out = x_out * a1 + b1 |
|
|
|
else: |
|
a1, a2 = torch.split(y, self.oup, dim=1) |
|
a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0] |
|
a2 = (a2 - 0.5) * self.lambda_a + self.init_a[1] |
|
out = torch.max(x_out * a1, x_out * a2) |
|
|
|
elif self.exp == 1: |
|
a1 = y |
|
a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0] |
|
out = x_out * a1 |
|
|
|
if self.spa: |
|
ys = self.spa(x_in).view(b, -1) |
|
ys = F.softmax(ys, dim=1).view(b, 1, h, w) * h * w |
|
ys = F.hardtanh(ys, 0, 3, inplace=True)/3 |
|
out = out * ys |
|
|
|
return out |
|
|