|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class EvoNorm2d(nn.Module): |
|
__constants__ = ['num_features', 'eps', 'nonlinearity'] |
|
|
|
def __init__(self, num_features, eps=1e-5, nonlinearity=True, group=32): |
|
super(EvoNorm2d, self).__init__() |
|
|
|
self.num_features = num_features |
|
self.eps = eps |
|
self.nonlinearity = nonlinearity |
|
self.group = group |
|
|
|
self.weight = nn.Parameter(torch.Tensor(1, num_features, 1, 1)) |
|
self.bias = nn.Parameter(torch.Tensor(1, num_features, 1, 1)) |
|
if self.nonlinearity: |
|
self.v = nn.Parameter(torch.Tensor(1, num_features, 1, 1)) |
|
|
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
nn.init.ones_(self.weight) |
|
nn.init.zeros_(self.bias) |
|
if self.nonlinearity: |
|
nn.init.ones_(self.v) |
|
|
|
def group_std(self, x, groups=32): |
|
N, C, H, W = x.shape |
|
x = torch.reshape(x, (N, groups, C // groups, H, W)) |
|
std = torch.std(x, (3, 4), keepdim=True) |
|
return torch.reshape(std + self.eps, (N, C, 1, 1)) |
|
|
|
def forward(self, x): |
|
if self.nonlinearity: |
|
num = x * torch.sigmoid(self.v * x) |
|
return num / self.group_std(x, self.group) * self.weight + self.bias |
|
else: |
|
return x * self.weight + self.bias |