|
import torch |
|
from torch import nn |
|
|
|
|
|
class IOULoss(nn.Module): |
|
def __init__(self, loss_type="iou"): |
|
super(IOULoss, self).__init__() |
|
self.loss_type = loss_type |
|
|
|
def forward(self, pred, target, weight=None): |
|
pred_left = pred[:, 0] |
|
pred_top = pred[:, 1] |
|
pred_right = pred[:, 2] |
|
pred_bottom = pred[:, 3] |
|
|
|
target_left = target[:, 0] |
|
target_top = target[:, 1] |
|
target_right = target[:, 2] |
|
target_bottom = target[:, 3] |
|
|
|
target_area = (target_left + target_right) * \ |
|
(target_top + target_bottom) |
|
pred_area = (pred_left + pred_right) * \ |
|
(pred_top + pred_bottom) |
|
|
|
w_intersect = torch.min(pred_left, target_left) + torch.min(pred_right, target_right) |
|
g_w_intersect = torch.max(pred_left, target_left) + torch.max( |
|
pred_right, target_right) |
|
h_intersect = torch.min(pred_bottom, target_bottom) + torch.min(pred_top, target_top) |
|
g_h_intersect = torch.max(pred_bottom, target_bottom) + torch.max(pred_top, target_top) |
|
ac_uion = g_w_intersect * g_h_intersect + 1e-7 |
|
area_intersect = w_intersect * h_intersect |
|
area_union = target_area + pred_area - area_intersect |
|
ious = (area_intersect + 1.0) / (area_union + 1.0) |
|
gious = ious - (ac_uion - area_union) / ac_uion |
|
if self.loss_type == 'iou': |
|
losses = -torch.log(ious) |
|
elif self.loss_type == 'linear_iou': |
|
losses = 1 - ious |
|
elif self.loss_type == 'giou': |
|
losses = 1 - gious |
|
else: |
|
raise NotImplementedError |
|
|
|
if weight is not None and weight.sum() > 0: |
|
return (losses * weight).sum() |
|
else: |
|
assert losses.numel() != 0 |
|
return losses.sum() |
|
|
|
|
|
class IOUWHLoss(nn.Module): |
|
def __init__(self, reduction='none'): |
|
super(IOUWHLoss, self).__init__() |
|
self.reduction = reduction |
|
|
|
def forward(self, pred, target): |
|
orig_shape = pred.shape |
|
pred = pred.view(-1, 4) |
|
target = target.view(-1, 4) |
|
target[:, :2] = 0 |
|
tl = torch.max((target[:, :2] - pred[:, 2:] / 2), |
|
(target[:, :2] - target[:, 2:] / 2)) |
|
|
|
br = torch.min((target[:, :2] + pred[:, 2:] / 2), |
|
(target[:, :2] + target[:, 2:] / 2)) |
|
|
|
area_p = torch.prod(pred[:, 2:], 1) |
|
area_g = torch.prod(target[:, 2:], 1) |
|
|
|
en = (tl < br).type(tl.type()).prod(dim=1) |
|
area_i = torch.prod(br - tl, 1) * en |
|
U = area_p + area_g - area_i + 1e-16 |
|
iou = area_i / U |
|
|
|
loss = 1 - iou ** 2 |
|
if self.reduction == 'mean': |
|
loss = loss.mean() |
|
elif self.reduction == 'sum': |
|
loss = loss.sum() |
|
|
|
return loss |
|
|