|
|
|
""" |
|
helper class that supports empty tensors on some nn functions. |
|
|
|
Ideally, add support directly in PyTorch to empty tensors in |
|
those functions. |
|
|
|
This can be removed once https://github.com/pytorch/pytorch/issues/12013 |
|
is implemented |
|
""" |
|
|
|
import math |
|
import torch |
|
from torch.nn.modules.utils import _ntuple |
|
|
|
|
|
class _NewEmptyTensorOp(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, x, new_shape): |
|
ctx.shape = x.shape |
|
return x.new_empty(new_shape) |
|
|
|
@staticmethod |
|
def backward(ctx, grad): |
|
shape = ctx.shape |
|
return _NewEmptyTensorOp.apply(grad, shape), None |
|
|
|
|
|
class Conv2d(torch.nn.Conv2d): |
|
def forward(self, x): |
|
if x.numel() > 0: |
|
return super(Conv2d, self).forward(x) |
|
|
|
|
|
output_shape = [ |
|
(i + 2 * p - (di * (k - 1) + 1)) // d + 1 |
|
for i, p, di, k, d in zip( |
|
x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride |
|
) |
|
] |
|
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape |
|
return _NewEmptyTensorOp.apply(x, output_shape) |
|
|
|
|
|
class ConvTranspose2d(torch.nn.ConvTranspose2d): |
|
def forward(self, x): |
|
if x.numel() > 0: |
|
return super(ConvTranspose2d, self).forward(x) |
|
|
|
|
|
output_shape = [ |
|
(i - 1) * d - 2 * p + (di * (k - 1) + 1) + op |
|
for i, p, di, k, d, op in zip( |
|
x.shape[-2:], |
|
self.padding, |
|
self.dilation, |
|
self.kernel_size, |
|
self.stride, |
|
self.output_padding, |
|
) |
|
] |
|
output_shape = [x.shape[0], self.bias.shape[0]] + output_shape |
|
return _NewEmptyTensorOp.apply(x, output_shape) |
|
|
|
|
|
class BatchNorm2d(torch.nn.BatchNorm2d): |
|
def forward(self, x): |
|
if x.numel() > 0: |
|
return super(BatchNorm2d, self).forward(x) |
|
|
|
output_shape = x.shape |
|
return _NewEmptyTensorOp.apply(x, output_shape) |
|
|
|
|
|
def interpolate( |
|
input, size=None, scale_factor=None, mode="nearest", align_corners=None |
|
): |
|
if input.numel() > 0: |
|
return torch.nn.functional.interpolate( |
|
input, size, scale_factor, mode, align_corners |
|
) |
|
|
|
def _check_size_scale_factor(dim): |
|
if size is None and scale_factor is None: |
|
raise ValueError("either size or scale_factor should be defined") |
|
if size is not None and scale_factor is not None: |
|
raise ValueError("only one of size or scale_factor should be defined") |
|
if ( |
|
scale_factor is not None |
|
and isinstance(scale_factor, tuple) |
|
and len(scale_factor) != dim |
|
): |
|
raise ValueError( |
|
"scale_factor shape must match input shape. " |
|
"Input is {}D, scale_factor size is {}".format(dim, len(scale_factor)) |
|
) |
|
|
|
def _output_size(dim): |
|
_check_size_scale_factor(dim) |
|
if size is not None: |
|
return size |
|
scale_factors = _ntuple(dim)(scale_factor) |
|
|
|
return [ |
|
int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim) |
|
] |
|
|
|
output_shape = tuple(_output_size(2)) |
|
output_shape = input.shape[:-2] + output_shape |
|
return _NewEmptyTensorOp.apply(input, output_shape) |
|
|
|
|
|
class Scale(torch.nn.Module): |
|
def __init__(self, init_value=1.0): |
|
super(Scale, self).__init__() |
|
self.scale = torch.nn.Parameter(torch.FloatTensor([init_value])) |
|
|
|
def forward(self, input): |
|
return input * self.scale |
|
|
|
|
|
class DFConv2d(torch.nn.Module): |
|
"""Deformable convolutional layer""" |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
with_modulated_dcn=True, |
|
kernel_size=3, |
|
stride=1, |
|
groups=1, |
|
padding=1, |
|
dilation=1, |
|
deformable_groups=1, |
|
bias=False |
|
): |
|
super(DFConv2d, self).__init__() |
|
if isinstance(kernel_size, (list, tuple)): |
|
assert len(kernel_size) == 2 |
|
offset_base_channels = kernel_size[0] * kernel_size[1] |
|
else: |
|
offset_base_channels = kernel_size * kernel_size |
|
if with_modulated_dcn: |
|
from maskrcnn_benchmark.layers import ModulatedDeformConv |
|
offset_channels = offset_base_channels * 3 |
|
conv_block = ModulatedDeformConv |
|
else: |
|
from maskrcnn_benchmark.layers import DeformConv |
|
offset_channels = offset_base_channels * 2 |
|
conv_block = DeformConv |
|
self.offset = Conv2d( |
|
in_channels, |
|
deformable_groups * offset_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
groups=1, |
|
dilation=dilation |
|
) |
|
for l in [self.offset, ]: |
|
torch.nn.init.kaiming_uniform_(l.weight, a=1) |
|
torch.nn.init.constant_(l.bias, 0.) |
|
self.conv = conv_block( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups, |
|
deformable_groups=deformable_groups, |
|
bias=bias |
|
) |
|
self.with_modulated_dcn = with_modulated_dcn |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.padding = padding |
|
self.dilation = dilation |
|
self.offset_base_channels = offset_base_channels |
|
|
|
def forward(self, x): |
|
if x.numel() > 0: |
|
if not self.with_modulated_dcn: |
|
offset = self.offset(x) |
|
x = self.conv(x, offset) |
|
else: |
|
offset_mask = self.offset(x) |
|
split_point = self.offset_base_channels * 2 |
|
offset = offset_mask[:, :split_point, :, :] |
|
mask = offset_mask[:, split_point:, :, :].sigmoid() |
|
x = self.conv(x, offset, mask) |
|
return x |
|
|
|
output_shape = [ |
|
(i + 2 * p - (di * (k - 1) + 1)) // d + 1 |
|
for i, p, di, k, d in zip( |
|
x.shape[-2:], |
|
self.padding, |
|
self.dilation, |
|
self.kernel_size, |
|
self.stride |
|
) |
|
] |
|
output_shape = [x.shape[0], self.conv.weight.shape[0]] + output_shape |
|
return _NewEmptyTensorOp.apply(x, output_shape) |
|
|